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Abstract 

The topological Hochschild homology of the integers T(Z) = THH(Z) is an S’-equivariant 
spectrum. We prove by computation that for the restricted C2-action on T(Z) the fixed points 
and homotopy fixed points are equivalent, after passing to connective covers and completing at 
two. By Tsalidis (1994) a similar statement then holds for the action of every cyclic subgroup 
C:n c S’ of order a power of two. Next we inductively determine the mod two homotopy groups 
of all the fixed point spectra T(L)““‘, following Bijkstedt and Madsen (1994, 1995) and Tsalidis 
( 1994). We also compute the restriction maps relating these spectra, and use this to find the 
mod two homotopy groups of the topological cyclic homology of the integers TC(Z), and of 
the algebraic K-theory of the two-adic integers K( 2,). @ 1999 Elsevier Science B.V. All rights 
reserved. 

.4 MS Cl~ssific~ltion: Primary: I9D55; secondary: 55P91; 55052: 55T99 

0. Introduction 

In this paper we compute the mod two homotopy groups of the topological cyclic 

homology of the integers. 

Let A be a ring. Fix a prime p and let all spaces, spectra and homotopy groups 

be implicitly completed at p. The topological Hochschild homology of A is an S’- 

equivariant spectrum T(A) = THH(A). The topological cyclic homology of A is a spec- 

trum E(A) defined as a suitable homotopy limit of the fixed point subspectra T(A)C;‘“, 

for varying II. Here C,. c S’ denotes the cyclic subgroup with I_‘” elements. There is 
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a cyclotomic trace map 

trc : K(A) + X(A) 

from the algebraic K-theory spectrum K(A) of A to its topological cyclic homology. 

See [5] or [l I] for these constructions. In this paper we consider the basic case A = Z 

and p = 2. We compute the mod two homotopy groups of the fixed point subspectra 

T(Z)C2” for all n, and use this to determine the mod two homotopy groups of K(Z). 

Let us first outline the main line of argument. 

To study the fixed point spectra T(A)‘p” we make a comparison with the homotopy 

fixed point spectra T(A)hCp”. There is a natural comparison map 

r, : T(A)+ + T(A)+ 

which in favorable circumstances induces an isomorphism on modp homotopy in non- 

negative degrees. Then r, induces a homotopy equivalence of p-adically completed 

connective covers. We call such maps connective p-adic equivalences. The fixed point 

spectra T(A)‘p” are always connective. 

There is also a spectral sequence, with E2-term 

(0.1) E;, =H-V&n, MV); UP)) 

abutting to x,+,(T(A)‘~~“; Z/p). In the first part of this paper (Sections l-4) we use this 

spectral sequence (with p=2 and n=l) to compute the mod two homotopy of r(Z)hC2. 

We also show that the comparison map ri : T(Z)c2 + T(Z)hC2 is a connective two-adic 

equivalence. Hence we obtain a calculation of the mod two homotopy of T(Z)c2. 

Let us write X[O, co) for the connective cover of a spectrum X, and X, for its p-adic 

completion. 

Theorem 0.2. The map & is a connective two-adic equivalence. Hence the induced 

map 

r, : T(Z),c2 + T(z)~c2[o, 00) 

is a homotopy equivalence. 

We prove this result as Theorem 4.7. This provides the calculational input for the 

following theorem of Tsalidis, proved in [20]. 

Theorem 0.3 (Tsalidis [20]). Fix a prime p. If the comparison map r, is a connective 

p-adic equivalence, then so is r, for all n > 1. 

Hence T(Z)c2” is two-adically equivalent to the connective cover of T(Z)hC2” for all 

n > 1, and the spectral sequence (0.1) can be used for p = 2 and all n 2 1 to compute 

the mod two homotopy of T(Z)‘z”. This is carried out in the second part of this paper 

(Sections 5-10). 
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The detailed structure of these spectral sequences is determined in Section 8. See 

Lemma 8.4 and Theorem 8.14. The resulting mod two homotopy calculations are de- 

scribed in Section 9. These lead to a calculation of the mod two homotopy of X(Z). 

Theorem 0.4. The mod two homotopy groups of TC(Z) have orders 

2 jkw *=-l,O, 

#71*(TC(Z);Z/2)= 4 ,fbr *>2 euen or *= 1, 

8 for *>3 odd. 

The remaining groups are trivial. 

We prove this as Theorem 10.9. Section 10 also gives more precise statements about 

the generators for the groups rr* ( TC( Z); Z/2) = TC*( Z; Z/2) and their multiplicative 

relations. 

The main interest in topological cyclic homology stems from its close relationship to 

algebraic K-theory. The following result is a special case of Theorem D of [ 111, com- 

bining a result of McCarthy on relative K-theory with continuity results of Hesselholt 

and Madsen. Let 2, be the ring of p-adic integers. 

Theorem 0.5 (McCarthy, Hesselholt-Madsen). The cyclotomic trace map 

trc : K(z,) + TC(t,,) E TC(Z) 

is a connective p-adic equivalence. 

Hence the calculation of TC(Z) amounts to a p-adic calculation of K(i?,). For odd 

primes p this was carried out by Bokstedt and Madsen in [6,7]. They obtained a 

p-adic homotopy equivalence of infinite loop spaces 

K@,), rv JP x BJP x BBU,. 

Here JP is the p-primary image of J-space, BJ, its first delooping, and BBU, r” SUP 

the p-completed infinite special unitary group. 

For p = 2 the results of the present paper will be used in [ 181 to give a two-adic 

calculation of K(p2) - both in terms of giving its homotopy groups, and by expressing 

it as an infinite loop space. The answer at p =2 is built from the same components 

as for p odd, but J2 must be interpreted as the complex image of J-space, and the 

product splitting above is replaced by two nontrivial fibrations. 

We next review the construction of the cyclotomic trace map in a little more detail, 

to fix notations. See [l l] for the full discussion. 

The fixed point spectra T(A)q” are related by natural restriction and Frobenius maps 

R, F : T(A )+ + Z-(A)‘@ , 

denoted @ and D respectively in [5]. 
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The Dennis-Biikstedt trace map tr : K(A) + T(A) admits lifts tr,,. : K(A) 4 T(,~)‘[J”, 

which are compatible with R and F up to chosen homotopies. Let 0, be the following 

category: 

R R R R 

, +p~...‘cy”-‘gIIp”:... 
F F F F F 

By definition X(A), = holim,.,IIP T(A):“. The lifts tr,” and chosen homotopies define 

the cyclotomic trace map trc : K(A), --7‘ TC(A),, which is well defined up to homotopy 

after p-adic completion. We let TF(A), = holimF T(A)>“. There is then a natural fiber 

sequence 

TC(A), -1, TF(A), 2 TF(A),. 

As an application of Theorems 0.2 and 0.3 we can recognize the intermediate trace 

invariant TF(Z)z as something more familiar. 

Corollary 0.6. There are hornotopy equivalences 

TF(Z)2 = hokm T(Z)?” 3 hobm r(Z),h”“[O, x) E T(Zf [0, m). 

In particular the cyclotomic trace map lifts the circle trace map trsl :K(A), + 

T(A):‘, which was discussed in [ 161. 

Hence there are exact sequences 

0 +&+,(&)2 5 7rzr+, r(Z),hs’ 2 712r+, QZ>,hS’ i K&2)2 + 0 

for all r>O. 

We now outline the various sections of this paper. The first part of the paper consists 

of Sections 1 to 4. Its main aim is to prove Theorem 0.2. 

In Section 1 we review and extend Bokstedt’s two-primary analysis of the circle 

trace map trsl : K(Z) 4 T(Z)hS’, starting with the results from [ 161. Because there is 

no (natural) algebra structure on the mod two homotopy of a ring spectrum, we are led 

to consider the action of its mod four homotopy upon its mod two homotopy, studied 

by Oka in [ 151. In particular we need the action of the mod four homotopy of T(Z) 

upon its mod two homotopy, discussed in [17]. This constitutes an added complication 

compared to the odd primary case, when modp homotopy admits natural products. 
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In Section 2 we recall from [lo] the Tute construction fl(G, T(Z)) for G C S’, and 

set up the spectral sequences abutting to the mod two or mod four homotopy of the 

homotopy fixed point spectra T(Z)h’?” and the Tate constructions n(C’?,,, T(Z)). There 

is a fundamental map of horizontal fiber sequences: 

We use this diagram for tz = 1 to determine the first differentials in the spectral se- 

quence (0.1). This approach also gives a simple proof of Theorem 5.8(i) of [6], for 

any Y. 
In Section 3 we consider a double ladder of maps relating the mod two and mod four 

spectral sequences for various groups Cz,> to one another. The maps are induced by 

Frobenius and Vewchidwzg maps, parallel to restriction and transfer maps in group 

cohomology. Naturality considerations among these spectral sequences place strong 

restrictions on where their first differentials of o& length may appear. 

In Section 4 we compute the spectral sequences for the mod two homotopy of the 

C?-homotopy fixed points and the Cz-Tate construction on T(Z). The absence of a 

natural algebra structure on the mod two spectral sequence is replaced by a study of 

the action of the mod four spectral sequence upon the mod two spectral sequence. It 

is therefore necessary to make a partial calculation of the mod four homotopy spectral 

sequence as well, coupled with the mod two computation. 

Considering diagram (0.7) it is clear that & is a connective two-adic equivalence if 

and only if the related map r?, : T(Z) - h(C,, T(Z)) is a connective two-adic equiv- 

alence. This is what we prove in Theorem 4.7. The mod two homotopy groups of 

both sides are known by the spectral sequence calculations, and the map is shown to 

induce an isomorphism in nonnegative degrees by a comparison with 7’(ff2), for which 

the result is known from [I 11. Conversely, diagram (0.7) shows that by Tsalidis’ 

Theorem 0.3, each map r,,, : T(Z)‘T:nm’ - 6U(CzJt , T(Z)) is a connective two-adic equiv- 

alence for all n > 1. 

The second part of the paper consists of Sections 5-10. These constitute an induc- 

tive argument along the lines of [20], computing the mod two homotopy of T(Z)“‘” 

and fi(C2,,, T(Z)) from the mod two homotopy of the corresponding spectra involv- 

ing C2,,+ I. 

In Section 5 we discuss short exact sequences of spectral sequences. We give a 

criterion in Proposition 5.4 for when a diagram of three spectral sequences that forms 

a short exact sequence at the El-term, persists to give short exact sequences of E”-terms 

for all r’2 1. 
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In Section 6 we apply this to the diagram of three spectral sequences computing the 

homotopy of A(s’, T(Z)) smashed with either of the three spectra in the following 

cofiber sequence: 

Here M =S”/2 is the mod two Moore spectrum. We use this in Proposition 6.5 

to internalize an external product on the spectral sequence E*(S’ ; Z/2) computing 

n*(&S’, T(Z)); Z/2), and show that its differentials are derivations. This result is par- 

ticular to A = Z, and may not hold for general rings. As an application we relate the 

even (resp. odd) columns of the spectral sequence computing rc*(fi(Cz., T(Z)); Z/2) 

to the even columns of _!?*(S’; Z/2), in a stable range. 

In Sections 7 and 8 we inductively determine the spectral sequences computing the 

mod two homotopy of T(Z)‘2”. Section 7 illustrates the step from n = 1 to n = 2; 

the latter section covers the general case. Theorem 8.14 gives the complete answer. 

Our argument largely follows the ideas of [6,20], but we are also able to make some 

simplifications. For instance our characterizations in Lemmas 9.3 and 9.7 substitute for 

the p-series from Section 4 of [6]. 

Here is how the proof can be thought of as an inductive argument. The inductive 

hypothesis (8.1) for n assumes complete knowledge of the upper half plane spectral 

sequence _l?*(C20;Z/2) computing the mod two homotopy of the Tate construction 

&l(C’z”, T(Z)). By restriction to the second quadrant, this determines the spectral se- 

quence E*(Cp; Z/2) computing the mod two homotopy of the homotopy fixed points 

T(Z)hC2”. In non-negative degrees this agrees via the comparison map r, with the 

mod two homotopy of the fixed points T(Z)‘z” (using Theorems 0.2 and 0.3), which 

in turn agrees via the other comparison map fn+i with the mod two homotopy of the 

next Tate construction b( C& I, T(Z)). See diagram (0.7). This gives the abutment of 

the spectral sequence l?*(C’,,+l; Z/2), and the remaining work is to recover the pattern 

of differentials in the spectral sequence leading up to this abutment. This uses the frag- 

ments of multiplicative structure available, and recovers the inductive hypothesis for 

n+ 1. 

In Sections 9 and 10 we analyze the answer, providing the information needed to 

assemble X(Z) from the fixed points r(Z)‘z”. In Section 9 we characterize the per- 

manent cycles in the spectral sequence computing the mod two homotopy of r(Z)czn, 

for each n. See Definition 9.2 and Lemmas 9.3 and 9.4. In the final section we de- 

termine the restriction maps R : T(Z)‘2” ---f T(Z)c2n-l on mod two homotopy, which 

suffices to determine the mod two homotopy of TC(Z). This is the main output or 

result of the present paper, given in Theorem 10.9. Equivalently, this computes the 

mod two homotopy of K(p2). 

In the sequel [18] to this paper, we will construct maps relating K(&) to known 

spaces (like the image of J-spaces mentioned at the beginning), so as to fiber off known 

parts from K(i?‘z), until the remaining piece is characterized (by its mod two homo- 

topy and being nearly K-local) as being equivalent to BBU =SU. The fiber sequences 
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involved will be classified by means of the multiplicative structures available, and a 

complete description of the infinite loop space K(z2)2 results. Finally the natural map 

K(Z) + K(p2) is studied, providing an interesting invariant of the algebraic K-theory 

of the integers. 

For convenience, let us gather together the definitions of various classes in the 

homotopy of Q(S’), K(Z) and K(Y?l) which will be defined in the course of the 

paper. All names are carried over along the natural ring maps Q(S”) ---f K(Z) + K(22) 

without further mention in the notation. 

Notation 0.8. Let q, v and G denote generators of 7~1 Q(S”)2 G Z/2, njQ(S”)2 E Z/8 and 

7c7Q(,S0)2 % Z/16, respectively. Then q3 =4v. Let L denote a generator of Kj(Z)2 E 

Z/ 16, such that 2/2= V. Then 2~ = 0 so there is a class jj2 E 712(Q(s”); Z/2) with 

mod two Bockstein j,(y”,) = ‘1. Furthermore 4v= y3 = 0 in K~(T?z), so there is a class 

$4 E K4(22; Z/4) with mod four Bockstein ,j2(?4) = V. Its mod two reduction is denoted 

/I?~ E K4(22; Z/2). There is a class /C E K5(Z)2 with mod two reduction il(~) = i-q2 

since iq = 0 in Kd(Z). It generates KS(Z), modulo torsion, which is 2,. Finally there 

is a class C? E K7(/?2)2 with mod four reduction iz(c?) = i1;4, since i.1’ = 2?.2 = 0. We shall 

prove in [IS] that CJ and 5 agree in K,(J?2)2. 

1. The circle trace map 

We begin by recalling BGkstedt’s analysis of the circle trace map trsl : K(&)z + 

T(Z),h” = Map(ES:, T(Z));‘. The skeleton filtration on the simplicial space ES: gives 

a homological upper left quadrant algebra spectral sequence 

(1.1) E,;*(P) = P(S’; 7-*(Q)? 
T*(Z), for ~50 even, 
o 

otherwise, 

converging to n,+i T(Z);” . Here H*(S' ; M) refers to group cohomology with coef- 

ficients in a discrete module M. There can be no group action on M, because .S’ is 

path connected. 

Recall from [4] that the nonzero homotopy groups of T(Z), are To(Z), E 22 and 

rzj_ 1 (Z)z E Z/i @ 22 E Z/2”2(i) for i > 0 even. Here ul(i) is the two-adic valuation of i. 

We choose additive generators g4k-1 E T4k_l(Z)2 of order 2L’(k)+1. 

Let d = Hi’“‘(HZ!/2; Z/2) F’ 2/2[51, CL,& , . . .] be the dual of the mod two Steenrod 

algebra, and let 2 = Hgpe’(HZ; Z/2) Z 2/2[4f, ~(2, ~(3,. . .] where x is the canonical 

involution. Then H;“’ (T(Z); Z/2) 2 &[e3, ea]/(ei = 0) as z-algebras, with e, E Hip” 

(T(Z);Z/2) for n =3,4. The spherical class g4k-1 maps to e3e4 k-’ under the Hurewicz 

homomorphism and mod two reduction. See [ 171 for further discussion. 

Also recall that H*(S’; Z)” Z[t], and more generally H*(S’; M) g M[t] for every 

module M, where t E H2(S’; Z) is a fixed generator. Thus the E2-term of the spectral 

sequence (1.1) appears as depicted in Fig. 1.2 below, with the origin in the bottom 
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I I I I I I 

z z z z z 1 

t4 P t” t 1 

Fig. 1.2. E*(S’ ) =s n* T(Z)ts’ 

right comer. The empty bidegrees contain trivial groups. The labels q, A,. . . ,26 indicate 

classes mapping to the generator of the group directly above the label, 

Note that all classes above the horizontal axis sit in odd total degrees. Thus 

x*T(Z)~~’ for * >O is concentrated in odd degrees. In particular there are no dif- 

ferentials originating above the horizontal axis. 

Consider the natural maps of infinite loop spaces 

(1.3) Q(s”)4(Z)+K(&) J% T(Z);? 

Classes in n*Q(s”), K*(Z) and f&(22) that map nontrivially to rc*T(Z)is’ survive as 

permanent cycles in the spectral sequence. 

The infinite loop spaces in (1.3) are all E, ring spaces, but it remains to be 

proved that the cyclotomic trace map trc : K(A), + TC(A), is multiplicative, and sim- 

ilarly for trsl : K(A), + T(Z)?‘. Hence we will not assume that the circle trace map 

above induces algebra homomorphisms in homotopy. On the other hand, the trace map 

tr : K(A) + T(A) is a map of E, ring spaces, e.g., by the construction using hyper-r- 

spaces in Section 2 of [3]. 

Notation 1.4. Let r~ E ~lQ(s’)” Z/2 be the class of the complex Hopf map S3 +S2. 

Then y2 generates 7rzQ(S”)” Z/2, and y3 is a class of order two in XJQ(S’). Let 



1’ E nxQ(,S’), be the class of the quatemionic Hopf map S’ -+ S4. Then I! generates 

rcsQ(S”)l 2 Z/8, and 4~ = 11~. 

Choose a generator i. E Kj(Z)* Z Z/16 (see [ 121) such that 23. = V, where we identify 

VE z~Q(S(‘)~ with its image in Kj(Z)?. Clearly 8j, = ~7~. 

Proof. The first two claims are due to Marcel Bokstedt. See [ 161 for proofs. The next 

claim is clear, since 7r*T(Z)= ‘s’ is concentrated in odd degrees and the maps (1.3) are 

module maps over rc*Q(S”). 

For the fourth claim, we use the splitting of two-completed looped underlying spaces 

4: L!JK(Z)2 +P QK(Z)1 of [2]. H ere JK(Z)2 is the homotopy fiber of the composite 

which comes equipped with a natural four-connected map @ : K(Z)2 +JK(Z)2. Then 

Q@ o (/I Y I on GJK(Z) 2, and i. = &;.‘) E K3(Z) 2 with I.’ = @(I. ), so y1 factors on the 

space level as 

s3 ‘!, S2 i,’ LZ?JK(Z)~ Q+ L?K(Z)2. 

Hence q,i+ is trivial as vi,’ E J&(B), = 0. An alternative proof is given by ArIettaz 

in [I]. 

I have the following direct proof of claim (5) from CA. Weibel. Let II& = 22[;] 

be the two-adic numbers. It suffices to prove that q3 = 0 in Ks(opz), since Ks(s2 )z + 

K~(&))z is an isomorphism by the localization sequence. We compute with the multi- 

multiplicative symbols {at,, . . ,a,} in Milnor K-theory K,“(bl), where the ai’s are 

units in 61, We write Milnor K-theory multiplicatively, so {at,a2} = 1 if at + a2 = 1. 

Then the symbol {-l} represents the image of q in KI”/(&) =KI(~z), and we need 

to prove that {-1,-1,-l} = 1 (since KF(&) maps to Kn((&) for all n). 

The quadratic residue symbol Kj’(bl) = Kl(U&) --+ {III 1 } E Z/2 is also called the 

Hilbert symbol (a, b)2, and detects K,(L) in K~(&I). By definition (a, 6)~ = +1 if the 

equation uxz -I- by2 = 1 has any solutions with X,JJ E 62, and otherwise (a,h)2 = - 1. 

Because & is a local field, the kernel of the quadratic residue symbol map {a, b} ++ 

(a, h)? is a divisible group by a theorem of Calvin Moore. See Chapter 11 and Theo- 

rem A. 14 of [ 141 for more on this. 

In particular (-l,-1)~ =(2,5)2 = -1, so i-1, -1}(2,5}-’ is in the divisible group, 

and can therefore be written as .Y* for some x f K$‘( (I& ). Thus { - 1, - I} = {2,5)x*. 
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Also {-1,2}= 1 since -1+2= 1, and {-1,x2}={(-1)2,x}= 1 by bi-multiplicativity. 

Thus 

{-1,-1,-1}={-1,2,5}‘{-1,x2}=1~ I=1 

is trivial in K,M( 62). Cl 

Next we wish to work with homotopy with finite coefficients. See [ 171 for a fuller 

discussion. Let 

be the Puppe cofibration sequence of spectra induced by the degree 2“ map So + So. 

This defines the mod 2’ Moore spectrum So/2”. The mod 2” homotopy of a spectrum 

X is defined as x*(X; Z/2”) = rc*(X AS’/~“). We write K*(A; Z/2”) = rc*(K(A); Z/2”) 

and &(A; Z/2”) = 7r*(T(A); Z/2’) w h en v > 1. There is a product map ~2 : So/4 A So/4 

4 S”/4, and a module pairing m : So/4 A So/2 4 S”/2, but no unital product on S”/2. 

See [15]. 

There is a coefficient reduction map p : So/4 -+S”/2 with poiz Eil and jr op~2o,j2. 

There is a coefficient extension map E :S”/2 -+S”/4 with &oil rr2oi2 and j2 OEEJ'~. 

Let 6, = i, o j,. : S”/2” + S’/2 be the homotopy Bockstein map. These maps fit into a 

cofiber sequence of spectra 

so/2 -% so/4 5 so/2 61 s’/2. 

The product ~2 is regular, in the sense that when X is a ring spectrum 82 acts as 

a derivation on n*(X; Z/4). Hereafter we shall often omit the unit maps i, from the 

notation. 

T(Z) is a homotopy commutative ring spectrum, but for degree reasons the product 

on T*(Z) is trivial in positive degrees. However the product map on So/4 induces a 

nontrivial commutative Z/4-algebra structure on r*(Z; Z/4), and a nontrivial module 

pairing of T*(Z; Z/4) upon T*(Z; Z/2). The following theorem was proved in [ 171. 

Theorem 1.6. (1) The mod two spherical elements 

T*(Z; Z/2) = z+(T(Z); Z/2) cHiPPC(T(Z); Z/2) Es[e,,q]/(e: = 0) 

are closed under the algebra product, so jbrm a subalgebra T*(Z; Z/2) E Z/2[e3, eb]/ 

(ei = 0). 
(2) We can choose generators j’,, E T,,(Z; Z/4) for n = 3,4,7 and 8, so that 

62(f4)=f3, 62(fS>=f7 and 

MC 214) z z/4[f3, f4, j-7, j-811 

(2f3=2f4=0, fifj=O,for i, j < 8, except f3f4=2f7) 

as algebras. 
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(3) The coefficient reduction map p: T*(Z;Z/4)+ T*(Z;Z/2) is an algebra map 

given by ,o(f3)=e3, ~(f4)=0, ,o(f’T)=ejed and P(fs)=e$ 
(4) The module action of T*(Z;Z/4) on T*(Z;Z/2) is given by the coeficient 

reduction map p : T*(Z; Z/4) + T*(Z; Z/2) follolced by the subalgebra product on 

T*(Z; Z/2). 
(5) The coe&cient extension map c: T*(Z; Z/2)+ T*(Z;Z/4) is a T*(Z;Z/4)-mo- 

dule map given by c(1)=2, a(e3)=0, a(ed)=f4 and E(e3e4)=2,f7. 

Proof. See Theorem 3.2 of [ 171. 0 

There is a universal coefficient short exact sequence 

0 i x*(X)/2” i, 71*(X; z/2”) J+2’. n*-I(X) + 0 

which is split for c 2 2, but not necessarily split for v = 1. The sequence is split also for 

v = 1 if multiplication by y induces a trivial map q : 27r*- l(X) + z+(X)/2. For example 

this is the case with X = T(Z)!js’ [0, co), since Q(X) % Z is torsion free and z*(X) is 

concentrated in odd degrees for * > 0. Hence rr*( T(Z)is’; Z/2) has exponent two in 

positive degrees. 

By analogy with the spectral sequence (1 .l), there are spectral sequences arising 

from the skeleton filtration on EC+ 

(1.7) E:,,(G;A)=P(G; &@;A)) =+ q+*(T(Z)hG; A) 

for every (closed) subgroup G C S’ and coefficient ring A = f, or A = Z/2” with v > 1. 

We write E*(G) = E*(G; &), in agreement with the case G = S’ . The other closed 

subgroups of S’ are the cyclic subgroups C,. Recall that H’(Cz.;M) “A4 when M 

is a trivial &-module, while we can identify Hk(C2.;M) Z,,M for k > 0 odd and 

Hk(C2,;M) -M/2” for k > 0 even. Then H’(C’z”; 12) Z Z/2” is generated by the re- 

striction of t E H’(S’; Z), which we also denote by t. Let u, E H’(CP; Z/2) 2 Z/2 and 

u; E H’ (C2”; Z/4) ” 2”27/4 be fixed generators for every n > 1. The u, and uk can and 

will be chosen to be compatible under the group transfer and coefficient extension 

maps. 

The spectral sequences E*(G) and E*(G; Z/Z”) are algebra spectral sequences for 

v>2, with product on the E*-term induced by the algebra structure on T*(Z), or 

T*(Z; Z/2”), and the cup product on cohomology. Similarly there is a natural module 

action of the spectral sequence E*(G; Z/4) upon E*(G;Z/2). However, as we shall 

see, E*( G; Z/2) is not generally an algebra spectral sequence, when we give the E’- 

term the algebra structure induced by the subalgebra product on T*(Z; Z/2) and the 

cohomology cup product. With Z/2-coefficients the E2-terms have the following form: 

when s <O and * - 0,3 mod 4 is nonnegative, 

otherwise, 
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SO 

for n22, replacing u:=O with u:=t when n=l. Here u,EE?~,~, GEE!,,,, e3EEi,, 

and e4 E Ei,4. The algebra structure given is induced by the subalgebra structure on 

T*(Z; Z/2) inherited from HiPeC(T(Z); Z/2), and since this might not be compatible 

with the S’-action on T(Z) we cannot a priori conclude that the d’-differentials in 

these spectral sequences will act as derivations. However it will be convenient to 

express the behavior of the spectral sequences in terms of these algebra structures on 

the above E2-terms. 

With Z/4-coefficients we have the following E2-term: 

E&(S*; Z/4) = T*(Z; Z/4)[t] 

rz/4[t~f3,f4,fl,f81/ No 

where N denotes the relations of Theorem 1.6(2), while E$,*(&; Z/4) is a little more 

complicated to write down. (But see Lemma 2.5 and the formulas after Lemma 3.2 

below.) Here t E Et,,,, and fk E E&. These are algebra spectral sequences, by natu- 

rality of the product on mod four homotopy. Unlike the mostly trivial algebra structure 

on the integral spectral sequences E*(G), the algebra structure on E*(G; Z/4) and 

E2(G; Z/2) is certainly nontrivial. 

The algebra structure on E*(G; Z/4) is commutative, because the commutator factors 

through the action of q2, which maps to zero in E*(S’) by Theorem 1.5(3), and thus in 

all the E*(G; .4) we consider. See Section 1 of [17] regarding this commutator. In fact 

T(Z)hS’ A So/4 will be a commutative ring spectrum, and similarly for T(Z)hC2” A So/4 

and A(&“, T(Z)) A So/4 (defined in Section 2), since the commutator map factors 

through a map induced by smashing with q2 : S* + So, which is inessential on all 

module spectra of T(Z)$s’ by Theorem 1.5(3). 

Classes in rc*(Q(S”); Z/2”), K*(Z;Z/2V) and K*(&;Z/2’) map under (1.3) to in- 

finite cycles in the spectral sequence E*(S’; Z/2”). We will now describe these maps 

in low degrees, for u = 1 and 2. 

Notation 1.8. Choose classes tj2 E n2(Q(s”); Z/2) and ii4 E rcl(Q(S’); E/4) so that 

ji(q,) = TV and j2(f4) = q. Choose classes 1s E K&2; Z/S), ir4 E K&; Z/4) and & E 

K4(22;Z/2) so that js(&)=J., jz(cd)=v and ji($)=2v. This is possible because 

81=4v=2 . 2v= r3 =0 in K3(&)2, by Theorem 1.5(5) above. Our convention is to 

let 2~~ denote a class with jv(ZzV) =x. 

With the right sign choices for these lifts the following theorem holds: 

Theorem 1.9. (1) r& maps to te4 E EFz,,(S1; Z/2) and G4 maps to tf4 E EYz,,(S1; h/4). 

(2) There are surjective dzjjizrentials d4(t) = t3e3 in E*(S’; Z/2), d4(t) = t3f3 in 
E*(S’; Z/4) and d4(t) = t3g3 in E*(S’). 
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(3) There is a nontrivial differential d4(e4) = t2e3e4 in E*(S’; Z/2), while d4( f4) = 

2t2f7 in E*(S’; Z/4). Hence there is a nontrivial extension 

Z/4 = E?4,7 + Z/8 + U/2 = EOyj 

in E*(S’). 

(4) v=21 maps to t2g7 EE?~,,(S’), to t2e3e4 E EF4,,(S’;Z/2) and to t2f7 E 

EZ&(S’; Z/4). 

(5) 52 maps to t2ei E E?$,(S’; Z/2) and C4 maps to t2 fs E EY4,,JS1; Z/4). 

We give a partial proof now, postponing the essential claim that d4(t) = t3g3 to 

Proposition 2.7. 

Proof. (1) The skeleton filtration on ES’ agrees with the filtration S’ C S3 C . . . C S” 

by the unit spheres S(F) c C’ of S( Cm) N ES’. In particular the inclusion 5’: --f ES: 

induces a map 

7’(Z)!” 4 Map(S:, i”(Z)):’ =X, 

which on the level of spectral sequences arising from the skeleton filtration above 

induces the truncation of E*(S’; A) to its two rightmost nonzero columns s = -2 and 

s = 0. See Section 3 of [16] for a discussion of this map. 

By Theorem 1.5( 1) n E rcr Q(S”) maps to tg3 in the resulting two-column spectral 

sequence for rc*X. So f2 E n2(Q(S”); Z/2) must map to a class x E 712(X; Z/2) with 

j,(x) represented by ty3. Thus x is nonzero, and the only nonzero class in total degree 

two of E,,t,(S’; Z/2) with s = -2 or s = 0 is ted E E”,.,(S’; Z/2). So f2 maps to te4. 

Similarly Y/4 E 7r2(Q(S”); Z/4) must map to a class y in nz(X; Z/4) with jz(y) rep- 

resented by tg3, and the only nonzero candidate is tf4. 

(2) We postpone the calculation of the differential d4(t)= t3g3 in E*(S’) until 

we have introduced the Tate construction and the norm-restriction fiber sequence in 

Section 2. 

Assuming this, the claims d4(t)= t3e3 in E*(S’; Z/2) and d4(t) = t3f3 in E*(S’; 

Z/4) follow by naturality with respect to the coefficient reduction maps i,, : So --f S”/2” 

for a= 1,2. 

(3) tf 4 is the image of t4 and therefore an infinite cycle in E*(S' ; Z/4). Hence 

0=d4(t.f4)=d4(t)fq+td4(f4)=t3f3f4+td4(f4) 

by (2). Since f3 f4 = 2f 7 by Theorem 1.6(2), and multiplication by t is injective in 

E4(S’; Z/4), we obtain d4( f 4) = 2t2 f 7. 

By naturality with respect to the coefficient extension map E :S”/2 +S”/4, with 

s(eb)= f4 and E(e3e4)=2fT by Theorem 1.6(5), we find d4(e4)=t2eje4. 

By considering the three-column spectral sequence with s = -4, s = -2 or s = 0 for 

x*( Y; LI) with Y = Map(S:, T(Z)):‘, and the universal coefficient short exact sequence, 

it is clear that the differential d4(e4) = t2e3e4 in E*(S’; Z/2) corresponds to a nontrivial 
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extension in 7t3Y, and thus also in E*(Si). For only Z/2{ej} survives in total degree 

3 in the truncated spectral sequence for rc*( Y; Z/2), so (7~3 Y)/2 2 Z/2 and 713 Y must 

be cyclic. 

(4) The nontrivial extension from (3) asserts that twice the generator 2 of 7csY must 

map to the generator of 2/4ZEE_“, 7(S’), i.e., that v maps to t*g,. The claims for 

mod two and mod four homotopy follow by coefficient reduction. 

(5) v maps to t2e3e4 in the three-column spectral sequence for n*(Y;Z/2). Hence 

2^;2 E Kd(j~; Z/2) must map to a class z E rcd(Y; Z/2) with 61(z) represented by t*ejed. 

So z is nonzero, and the only nonzero class in total degree four of E,$.(S’; Z/2) with 

-4<s<O is t*ei E EFd,,(S’; Z/2). Thus 2^;2 maps to t*e&f. -- 

Similarly Cd E K&; Z/4) must map to a class w E 714(Y; Z/4) with 62(w) repre- 

sented by t*fT. Now S2( fs) = f,, so the only possibility is CJ H t’fs. 0 

Remark 1.10. Apparently it is necessary to use mod four homotopy with its algebra 

structure, rather than just integral and mod two homotopy and the pairing between 

them, in order to translate the differential d4(t) = t3e3 into the nontrivial extension in 

total degree three. 

We proceed to define certain classes in K*(Z) and K*(z2), which are detected in 

71* r(Z);s’ 

Lemma 1.11. (1) There is a nonzero class lc E KS(Z) defined modulo 2 by il(lc) = ILi7,, 

which maps to tg7 E EFZ,,(S1). 

(2) There is a nonzero class 5 E K7(&) defined mod&o 4 by i*(6)= Ai74, which 

maps to t2gll E E_W4,4,11(S1). 

Proof. By Theorem 1.6(4), jl(Zj2) = $ = 0, so IC E KS(Z) is uniquely determined 

modulo 2. Since L H gs integrally, and Q2 H tea mod two, we get that IC maps to a class 

in E*(S’) which gives gs . ted = te3e4 under mod two reduction, i.e., &tg7 E EY2 7(S’). 

We can choose the plus sign. 

(The remainder of the proof is complicated by the fact that we do not know whether 

trsl is multiplicative. Instead we use that it is a module map over rc*Q(,S”).) 

We find jz(lC4) = ilv = 2A2 = 0 since K*(i?2) is a graded commutative algebra and 

1, is of odd degree. So CE K7(Z2) is well defined modulo 4 by iz(G)=/ICd. Then 

i2(2G) = vf4 and so i2(trSj (2~7)) = trsl (v . Cd) = v . trsl (i74), which maps to t*g7 . t*fg = 

t4f7fg in E*(S’; Z/4). 
Since tr : K(&) --f T(22) ” T(Z)2 is multiplicative we get iz(tr(C)) = g3 . 0 = 0, so 

tr,l(e) is not detected in Ei,7(S1) and must have filtration < -4. The group E24,11(S1) 
=2/2, so trs1(2e) must have filtration I-8. Since its mod four reduction maps to 

t4f7 f8 be the calculation above, it must have filtration precisely -8. So trs1(2C) is 

represented by an odd multiple of t4g15 # 0, which is not divisible by 2 in E?8, ,5(S’). 
Hence trsl (~7) is represented by t2gii, as claimed. 0 
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When we have determined the first additive extensions in E*(S’ ), in Corollary 4.4 

below, the following additional classes can be detected. 

Lemma 1.12. KEK~(Z) has order ut Zeast eight, and 41~ H t3gll in EYe,,l(S’). 

~7 E K,(gz) has order at least 16, and 2~7 H t4g15 in EY8,,,(S’) (up to an odd nzultiple). 

Proof. We assume Corollary 4.4. Then KS(Z) --t qT(Z)f *Z/8-+2/4 takes ti to 

a generator of Z/4, whence IC generates a cyclic group of order at least eight. The 

argument in degree seven is similar, after fibering over T(Z), to avoid the class ~7. 0 

Remark 1.13. The class IC represents a generator in KS(Z) modulo torsion, which is Z 

by [8]. Hence u can be chosen to generate a direct Z-summand in KS(Z). To prove this, 

use Biikstedt’s map @: K(Z)* -JK(Z)x from [2], which maps i](K)= ,b& to the gen- 

erator I_‘?& for n#K(Z); Z/2), and so takes IC to a generator of JKj( Z)x = 22. Hence 

rts( @) identifies KS(Z), modulo its torsion subgroup with JKj( Z), = 22. Presumably 

there is no torsion in KS(Z). 

We will prove in [18] that 5 and (T agree mod two in K7(&)2. If JC~ = 0 in Kc(Z) 

it still remains to prove that ir (0) represents I+ in K7(Z; Z/2). 

2. The Tate construction on T(Z) 

Let G be a compact Lie group, and T a G-spectrum indexed on a complete 

G-universe, in the sense of [ 131. There is a G-cofibration sequence of G-spaces 

defining i?G, where c collapses EG to a point. The Tate construction for G acting on 

T is defined in [lo] to be 

Q(G, T) = [_!?G A Map(EG+, T)]‘. 

This is the G-fixed point spectrum of the Tate spectrum denoted tc(T) in loc.cit. 

Smashing the G-cofibration sequence above with the adjoint c : T --+ Map(EG+, T), and 

taking G-fixed point spectra, we obtain the following map of fiber sequences 

[EG+ ATIG - TG - 

I 

[EGA TIG 

LEG+ A MapW+, T>lG A Map(EG+,T)’ A [I?G A Map(EG+, T)lG. 
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Now suppose G = C2” c S1 and T = T(Z). Then since T(Z) is a cyclotomic spec- 

trum, by Section 4 of [l l] the diagram above is homotopy equivalent to the following 

diagram: 

Nh Rh 

W)hC*. - T( Z)hCzn A fi(G, T(Z)) 

We call the top fiber sequence the norm-restriction sequence. 

The lifted trace maps tr2” : K(22) + T(Z)? are compatible up to homotopy un- 

der the subspace inclusions F : T(Z)? c T(H)?-‘. Furthermore, by Proposition 2.5 

of [5] the maps R and F agree up to homotopy on the image of the trace map from 

K-theory. 

For, in their notation, there is a homotopy DP o A,. o i = DP o A, o A,“-1 o i cv 
A,,-, o i and QJ~ = A;‘, so QP o A,. o i -DP o A,” o i. Here APO o i induces the lifted 

trace map tr,. : K(A) -+ T(A)Cp”, DP induces F, and Qp induces R. So in the current 

notation Rotr,. zFotrp”. 

Thus, in the case n = 1 of the diagram above, the trace map tr: K(z2) --f T(Z)2 

factors as follows: 

We take these two diagrams as the definition of the norm and homotopy norm maps 

N and Nh, the homotopy restriction map Rh, and the comparison maps r, and f,,. We 

will use fr : T(Z) -+ n(C2, T(Z)) to prove Theorem 0.2, by means of the following 

lemma. 

Lemma 2.3. If fl is a connective two-adic equivalence, then so is r,. Hence 
Theorem 0.2 follows if Q(~I; Z/2) is an isomorphism for all * 20. 
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Proof. The map of fiber sequences above determines a homotopy equivalence from 

the homotopy fiber of I-1 to the homotopy fiber of PI, which proves the lemma. 0 

There is a spectral sequence E*(G; A) for every closed subgroup G C S’ and A = 22 

or A = Z/2”, with E2-term 

(2.4) &=fi-“(G;T*(Z;/l)) =+ n,++@(G,T(Z));/i). 

Here fi*(G;M) denotes Tate cohomology [9] of G with coefficients in a G-module 

M. For a finite group G, pk(G;M)=Hk(G;M) when k>l, while kPk(G;M)= 

Hk-r(G;M) when k>2. 

We write E*(G)=E*(G;zz), to match our previous notation E*(G). As before 

the group action on r*(Z; II) is trivial, because the action extends through the path 

connected group S’. We note that (2.4) is an upper half plane spectral sequence. Each 

of E*(G) and E*(G; Z/2’) with v>2 is an algebra spectral sequence, when the E2- 

term is given the product induced from the product on T*(Z; /i) and the cup product 

in Tate cohomology. E*(C2; Z/2) is not an algebra spectral sequence with this product 

on the E2-term; see Remark 2.8. But we will see later that there is another “formal” 

algebra structure on this E2-term, which does make E*(C2; Z/2) into an algebra spectral 

sequence. See Theorem 4.1. 

Recall that fik(S1 ; M) %A4 for k E Z even, and 0 for k odd. Similarly kk(Cz”; M) ? 

M/2” for k even and PM for k odd. Let t E fi2(S’; Z) be the generator compatible 

with our previous choice of TV H2(S1;Z). Now t is invertible in I?*(S’;Z), with 

t-’ E k2(S’; Z). The class t maps to similar generators for all our 6’(G;/1). We 

likewise extend the notations u, E k’(C2”; Z/2) and u: E A’(C2.; Z/4). 

The homotopy restriction map Rh : T(Z)hG + fi(G, T(Z)) is compatible with the 

map of spectral sequences from E*( G; A) to E*(G; A) induced by the natural map 

H-“(G;M) + fij-‘(G;M), which is the identity for --s < 0, the obvious surjection 

for s =O, and the zero map for --s > 0. With Z/2-coefficients, the E2-terms take the 

following form: 

for II > 2, replacing UT = 0 with U: = t when n = 1. On the level of E2-terms, the ho- 

motopy restriction map Rh simply inverts t. 

It may be helpful to make the mod four product pairing completely explicit. 

Lemma 2.5. In E*(Czn; Z/4) we have u{ . f 3 = 0 and u{ f4 = 0 for n = 1, while 

u:.fJ=u,f3 andul,.fa=u,,fdforn>2. H ere u,f3 generates E2,,3(C2n; Z/4), und 

similarly for u, f 4. 

Proof. u{ generates the order two torsion in Z/4, i.e., the class of 2, and annihilates 

the order two classes f 3 and f4. For n > 2, uI, generates the order 2” torsion in Z/4, 

which is represented by the class 1 E Z/4, and takes f s and f 4 to the generators of 

the order 2” torsion in the Z/2-groups they generate, i.e., to u,,fj and u,fq. 0 
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Fig. 2.6. 8*(C2; L/2) =S a(h(C2, T(Z)); L/2). 

The E*-term of l?*(C2;2/2) appears as depicted in Fig. 2.6. Every nonzero group 

is Z/2, with the listed generator. 

Proposition 2.7. In the spectral sequence E*(C2; 212) the classes te3 E El*,3 and ted 

E E?,,, represent the images of the classes il (n) and ri2 from x*(Q(S’); z/2), respec- 

tively. 

In the spectral sequence fi*(Cz; z/2): 

(1) 1 E.!?:,~ and e3 El?& are hit by it(l) and i,(A) from &(&H/2), and are thus 

infinite cycles. 

(2) There is a nonzero d@rential d4(t-‘) = te3. 

(3) There is a nonzero dtjerential d5(tP2u1) = ted. In particular d4(t-*ul) = 0. 

The deferential d4(t-‘) = te3 lifts over the coefJicient reduction map il to the spec- 

tral sequence l?*(C2), and over the group restriction C2 c S’ to k*(S’). The latter 

two are algebra spectral sequences, and thus d4(t) = t3g3 in both cases. 

Proof. The initial claim and statement (1) is clear, by Theorem 1.5 and naturality 

with respect to the coefficient reduction map il : So -+ So/2 and group restriction over 

c2 cs’. 

For claim (2), consider where il(n)E nl(Q(S”);2/2)-tK,(~2;2/2) maps in di- 

agram (2.2). The class iI maps to zero in Tt (Z; Z/2), so its image under pt 

in l?*(C2; Z/2) is an infinite cycle that does not survive to Em, i.e., it must be a 

boundary. The factorization of tr through T(Z)? maps i,(n) to te3, and Rh takes 

te3 E E?,,(Cz; H/2) to the matching class te3 ~&2,3(C2; Z/2). Thus te3 is a boundary 

in 8*(C2; z/2), and by bidegree considerations the only possible differential hitting 

this class is d4(t-‘) = te3. 
Similar considerations for & E rcz(Q(S’); Z/2) mapping to zero in T2(Z; Z/2) and 

landing at te4 in E*(C2; Z/2) show that ted is a boundary in Z?*(Cz; Z/2). The only 

possibilities for differentials are d2(e3) = te4 and ds(tP2u1) = ted. The first is excluded 

since e3 is an infinite cycle. Thus t-*tq survives to ES, but no longer. 
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The concluding claims are clear by naturality, combined with the following calcula- 

tion in I?*(G): 

0 = &(t . t-’ ) = d(t) . t-1 + t . dy-‘) = d(t) t-1 + t2g3 

which gives d4(t) = t3g3. q 

Remark 2.8. The final claim completes the proof of Theorem 1.9(2), which was post- 

poned. It also makes it clear that E*(Cz; Z/2) and _&*(Cz; Z/2) are not algebra spec- 

tral sequences with the E2-terms given, because u1 survives to E4 in both cases, but 

&(t)=d‘yu~) # 22.4, . d‘yu,)=O. 

In terms of spectra, we may express this by noting that T(Z) A So/2 admits a product 

map making it a ring spectrum up to homotopy, but this map cannot be chosen to be 

Cz-equivariant. This may be reformulated as stating that 1 A q : T(Z) AS’ + T(Z) is 

inessential, but not C2-equivariantly inessential. 

Remark 2.9. Each map K(Z)2 5 P’(Z)2 5 T(Z)? is a ring spectrum map, and 

F: T(Z)? + T(Z)>-’ 1s a TC(Z)z-module map. Since F o F, o n pv R o F, o n the same 

goes for R : T(Z)? + T(Z)?-‘, and so the norm-restriction fiber sequence in (2.2) 

consists of K(Z)*-module spectra and maps. If trc is multiplicative then these are also 

K(pI)-module spectra and maps. 

3. A double ladder of spectral sequences 

In the next section we will determine the evolution of the spectral sequence 

G*(C2; U2) =+ n*(W2, WQ); Z/2), 

by relating it to the spectral sequences L?*(C,.; Z/2”) for all II > 1 and u = 1,2. Then we 

will conclude that ft : T(Z)* + fi(C2, T(Z)) induces isomorphisms on mod two homo- 

topy in non-negative degrees by a comparison with the corresponding map ft : T( [Fz) + 

6ll(C2, T([Fz)) for the prime field [F2, which is proved to be a connective two-adic equiv- 

alence in [ll]. 

Here we begin this program by reviewing a system of natural maps linking these 

spectral sequences together. We next derive vanishing results for the differentials in 

these spectral sequences. 

Recall from Section 2 of [ 1 l] that the Frobenius map F = F, : T(Z)‘zn+l + T(Z)c~” 

is the inclusion forgetting part of the group action, and that there is a Verschiebung 

map V = V, : T(Z)c2n + T(Z)C2g2+1 defined up to homotopy as a group transfer over the 

inclusion C2” C C,.+, . The key point is that the fixed point spectra Tcq are identified 

with Map((S’/C,)+, T)” when C, c S’ and T = T(Z) is an S’-spectrum. F, is then 

induced by the S’-map (S’/C*“)+ + (S’/C&+I )+ while V, is induced by the (stably 

defined) S’-equivariant transfer map (S’/C&- I )+ + (S’/C2”)+. 
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We might also mention that F is multiplicative, F and V satisfy Frobenius reci- 

procity, and that FV = VF = 2. 

There are similar Frobenius and Verschiebung maps linking the homotopy fixed point 

spectra, given by acting upon T = Map(ES:, T(Z)). Also there are corresponding maps 

of Tate constructions 

F = F, : o-lo(C,,+~, T(Z)) + ti(&, T(Z)), 

V = v, : A(C*n, T(Z)) + A(C,“,l, T(Z)), 

given by acting upon T =l?S’ A Map(Esi, T(Z)). All these Frobenius maps (resp. 

Verschiebung maps) are compatible under r, and Rh, since r, is induced by the natural 

map c : T(Z) -+ Map(ES:, T(Z)), and Rh in turn is induced by the map So + ES’. 

F, and V, induce maps of spectral sequences 

El 

(3.1) 8*(C*.+l; A) p=d*(cp; A). 
K 

On E2-terms F, is induced by the group restriction 

on Tate cohomology, compatible with the group restriction map in ordinary group 

cohomology. Similarly V, is induced by the group transfer 

on Tate cohomology, compatible with the group inclusion map in ordinary group ho- 

mology. The following calculations are standard. 

Lemma 3.2. 

A*(&; Z/2) ” Z/2[t, t-1, z&]/(24; = O), 

A*(C2”; Z/4) E Z/4[t, t-‘,U;]/((U;)2 = 0) 

for n 2 2, while 

tj*(c& Z/2) E z/2p,t-‘, u,]/(u; = t), 

A*(C2;2/4)“H/2[t,t-‘,u;]/((u’l)2=0). 

When A= E/2, the maps F, and V, are given on Tate cohomology by F,(u,+l) = 0, 
F,(t)=& &(u~)=u,+I, and &(t)=O. 

For A = Z/4 and n = 1 the maps Fl and ti are given by F~(ui) = u\, Fl(t) = t, 
F(u{)=2ui and &(t)=2t. 

Finally, when A = Z/4 and n 2 2 the maps F, and V, are given by F,(uk+, ) = 2uL, 
F,(t) = t, K(uk) = uL+, and K,(t) = 2t. 
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Hence the E*-terms in (3.1) take the following form: 

.G%*(C&; z/z>r 
W4{W4 for -s=2k, 

Z/2[e,]{tkun, tkune3} for --s = 2k + 1 

for all 12 > 1, and 

1f;,*(c2;2/4)” wf81{t tkf3,tkf4, tkf7} for -s=2k, 

iz/2[fs]{tku~,tkulf3,tkulf4,tku{f7} for -s=2k + 1, 

while 

ru wu-sl~tk,tkf7} 63 uafsl{tkf3, tkj”4} for -s=2k, 
- 

Z/4[f8]{tku~,tku~f7} CD z/2[fs]{tkunfj, tku,f4} for -s = 2k + 1 

for n 2 2. The group comparison maps on E*-terms are given as follows. 

Lemma 3.3. Suppose A = Z/2. Then Fn(tkeix) = tke$F,(x) and K(tkeix) = tke$ V,(x) 

for all integers k and & > 0. The Frobenius map satisfies F,(l) = 1, F,(e3) =e3, 
Fn(u,+,) = 0 and F,,(un+1e3)=0, while the Verschiebung map is determined by 

V,(l) = 0, K,(e3)=0, Vn(u,,)= un+l and K(u,e3) = u,+le3. 
Suppose A=Z/4 andn= 1. Then Fl(tkfgix)=tkf8(Fk(x) and V’i(tkf[x)=tkfs/‘v(x) 

for all integers k and Pro. Now F,(l)= 1, Fl(f3)=f3, fi(f4)= f4 andFl(f7)=J;, 

while Fl(u:) = ui, FL(u2f3)=0, Fl(uzfd)=O and F1(u&f7)=u{f7. Further V,(l)=2, 

&(f3)=0, &(f4)=0 and fi(f7)=2,f7, while 6(u’,)=2u;, 6(&)=u2_fi I/;(ulfb) 
=u2f4 and V,(u:f7)=2uif7. 

Suppose A = Z/4 and n > 2. Still F,(tk fix) = tk f,/F,(x), and K(tk f;x) = tk fl K(x). 

Here F,(l)=l, Fn(f3)=f3, Fn(f4)=f4 and G(f7)=f7, while fi(u~+,)=2& 
F,(u,+l f3)=0, F,(un+lf4)=0 and Fn(uL+,f7)=2uLf7. Finally V,(1)=2, V,(f3)=0, 

Vn(f4)=0 and K,(f7)=2f7, while Vn(~A)=ui+~, Vn(unf3)=un+lf3, K(u,f4)=u,+1.f4 

and Vn(uLf7) = uL+,f? 

Corollary 3.4. In the diagram (3.1) F, induces an isomorphism between the even 
columns of the E*-terms, when n L 1 and A= Z/2 or Z/4. 

Similarly, V, induces an isomorphism between the odd columns of the E*-terms, 
when A=212 and n 2 1, or when A=Z/4 and n>2. 

The coefficient reduction and extension maps induced by p: So/4 + So/2 and E : So/2 

--j So/4 induce maps of spectral sequences 

P 

(3.5) E*(c*.; Z/4) gf Jqcp; Zj2) 
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for all it 2 1. The actions of p and E on T*(Z; A) were described in Theorem 1.6(3) 

and (5). Upon applying Tate cohomology we get the following coefficient comparison 

maps on the level of E2-terms. 

Lemma 3.6. First suppose n = 1. Then p(tkf[x) = tkei’p(x), und E(tkei’x) = tkf[&(x) 

for all integers k and t! L 0. The coejficient reduction map satisfies p(l)= 1, p(f3)= 

es,p(f4)=Oandp(f7)=e3e4, whilep(u’,)=O, Aulf3)=ule3, p(ulf4)=Oandp(uif7) 
= 0. The coefJicient extension map satisjies E( 1) = 0, E(Q) = 0, e(e4) = f4 and E(e3e4) 

= 0, while E(UI ) = u{, E(uIe3)=0, E(uleb)=ulf4 and E(ule3eq)=uif7. 
Now suppose II > 2. Still p(tk f,‘x) = tkei’p(x), and &(tke_j’x) = tk f,‘&(x) for all inte- 

gers k and G LO. The coejicient reduction mup satisjies p( 1) = 1, p( f3) = e3, p( f4) = 0 

and p(f7) = e3e4, while P(u;> = u,, p(u&) = u,ej, p(unf4) = 0 and p(uhf7) = une3e4. 
The coefJicient extension map satisjes ~(1) = 2, e(e3)= 0, c(eb)= f4 and E(e3e4) = 

2f7, while E(u,)=~u;, E(une3)=0, E(u,eq)=u,fd and &(une3e4)=2uLf7. 

Altogether we obtain the following double ladder of spectral sequences: 

There is a similar double ladder of spectral sequences E*(&; /1), essentially obtained 

by truncating to the upper left quadrant, and the maps Rh :E*(&;A)-+ 

~*(CP; A) induce a map of double ladders. 

We can now deduce some systematic results. 

Suppose /1= Z/2, fix an integer no > 1, and consider the family of spectral sequences 

~*(CZ.; Z/2) with n > no. Let ro be the minimal odd r such that there is a nonzero 

d’-differential in some of these spectral sequences. (If there are none, let r-0 = 00.) So 

the only nonzero d’ in k*(Cz.; Z/2) with n > no and r < ro appear for r even. In 

particular there is no interaction between the odd and even columns. Thus the E2- 
isomorphisms of Corollary 3.4 propagate up to and including the ErO-terms. Hence all 

@‘(CP; Z/2) for n > no are abstractly isomorphic, with the isomorphisms induced by 

the F, on even columns, and by the V, on odd columns. 

Similar considerations apply with A = Z/4, if we assume no > 2. Again there will be 

a maximal odd ro such that d’ = 0 for r odd, r <ro, in all k*(&; Z/4) with n > no, 
and F, and V, induce isomorphisms between the even and odd columns, respectively, 

of all these spectral sequences up through the E’O-term. 
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Definition 3.7. Let ra = Q(Q, u) be the length of the first nontrivial odd differential 

among the spectral sequences I?*(&; Z/2”) with n > no. When t) = 1 (so A = Z/2) we 

also write ~(~20) = ro(nfj, 1). 

Proposition 3.8. The shortest nonzero odd differential among the l?*(C,.; Z/2) with 

n > no, if any, appears as a drO-AifSerential originating on e.+(C,n,; Z/2) with s odd. 

Then dro =0 on ~,(C2n0;Z/2) with s even, and d’o =0 on a11 l?o(CZfl;E/2) with 
n > no. 

In particular ro(no) is strictly increasing in no (while jinite). 

The shortest nonzero odd differential among the l?*(C,.; Z/4) with n > no > 2, ij 

any, appears as a d’“-difSerentia1 originating on ~.+.(C2~,j ; Z/4) with s odd. Then 

d’“=Oon~*(C2”;2/4)ifsisevenandn>no,orifsisoddandn>no+2. Zfsis 
odd and n = no + 1, then 2 . d’” = 0 when * = 0,7 mod 8, while d’” = 0 if * E 3,4 mod 8. 

Proof. Consider the following diagram, with ro odd and n > no. 

Ifs is odd, s - ro is even, and V, is an isomorphism on the left while it is zero on the 

right. Hence the top drO is zero. So dro = 0 on e.+.(C2”; Z/2) for s odd and n > no. 

On the other hand, if s is even, s - ro is odd, and F, is an isomorphism on the left 

while it is zero on the right. Thus the bottom drO is zero. So dro = 0 on q*(Cz”; Z/2) 

for s even and n > no. 

Hence the only possible nonzero dro-differentials are as claimed, originating in 

,$p.+.(C2n0; Z/2) for s odd. 

The proof in the case of Z/bcoefficients is similar, except that instead of being 

zero in even columns V, is zero in fiber degrees * = 3,4 mod 8 and multiplies by two 

when * = 0,7 mod 8, and likewise for F, in odd columns. The composites Vn+l o V, and 

F, o&+1 do induce zero maps in these columns. II 

Remark 3.9. For a fixed n, the spectral sequence 8*(Cz.; Z/2) is abstractly isomorphic 

(through the Frobenius and Verschiebung maps) to each of the preceding spectral 

sequences &*(C,,; Z/2) for 1 5 i < n up through the E’-term, with r = ro(i). This range 

increases up to ro(n) as i grows to n. Hence we have for each i > 1 a well-defined 

abstract segment of a spectral sequence, given by the E’-terms and differentials of 

_!?*(CZ~; Z/2) for ro(i - 1) <r < ro(i). Each of these segments has only even nontrivial 

differentials. 
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The spectral sequence ~?*(CZ~; Z/2) evolves through the first n of these segments, for 

1 5 i 5 rz. Then its first odd differential d’o with ro = rs(n) appears, and distinguishes 

g*(C&; Z/2) from the subsequent spectral sequences. It will appear in the second part 

of this paper that with Z/2-coefficients, _8*(&; Z/2) collapses at the E”O+‘-term, im- 

mediately after the first odd differential. Thus _8*(&; Z/2) passes through n systematic 

stages of even differentials, followed by one terminating odd differential. 

Similar considerations apply with Z/4-coefficients, except that the spectral sequence 

~*(CZ; Z/4) is somewhat exceptional, and that these spectral sequences do not collapse 

immediately after their first odd differential. 

Next we have some vanishing results. Consider the square of spectral sequences with 

A = Z/20: 

Proposition 3.10. (1) The only nonzero diftkentials in 8*(S’) come from the hori- 

zontal axis. 

(2) Let A= Z/2’ with v > 1. The classes in (even, odd) bidegrees in ,!?*(S’; A) are 

injinite cycles, and the classes in (odd, odd) bidegrees are never boundaries. 

(3) Let n > 1. The classes in (even, odd) bidegrees in ,@*(Cz”) are injinite cycles, 

and the classes in (odd, odd) bidegrees are never boundaries. 

(4) d’ = 0 for r = 2,3 mod 4 in &,*(CZ~; A), with a possible exception in the cases 

when r=2mod4, s is odd and *=3mod4. 

Proof. (1) Above the horizontal axis 8*(S’ ) is concentrated in (even, odd) bidegrees, 

so for bidegree reasons there cannot be any nonzero differentials originating from pos- 

itive fiber degrees. Hence all classes above the axis are infinite cycles. 

(2) k*(S’; A) is concentrated in the even columns, and on E2-terms the coefficient 

reduction map 8*(S’)-+&*(S’; A) is surjective in odd fiber degrees. Let x be a class 

surviving to _!$ *(S’ ; A) in an (even, odd) bidegree. Then x also survives in the trun- 

cated spectral sequence where all groups in filtration degrees greater than s are set to 

zero. And a lift of x to the E2-term will be the image of a class y from &,,(S’). 

Then y is an infinite cycle, and in the truncated spectral sequence there is no room for 

it to be a boundary, so y will survive to E’ and map to x. Hence x is also an infinite 

cycle. 

A class in an (even, even) bidegree could only be the boundary of a differential 

from an (even, odd) bidegree, where we have just seen that all the classes are infinite 

cycles. 
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(3) The group restriction map k*(S’)+I?*(&) is sutjective in (even, odd) bide- 

grees on E2-terms, so again by considering truncated spectral sequences it follows that 

each class surviving to I?(C2,E) in these bidegrees is the image of an infinite cycle, 

and thus does not support a differential. 

Then a class in an (odd, odd) bidegree can only be hit from an (even, odd) bidegree, 

or from the horizontal axis, and the first possibility has just been excluded. On the other 

hand, a differential from the horizontal axis would have to originate in an odd filtration 

degree, and fi-‘(C2”; 22) = 0 for s odd. So also this second kind of differential must 

be zero. 

(4) Consider d’ : q * + &_, *+r_, . From bidegree considerations it is clear that 

d’=O when r-3mod4, or when rE2mod4 and *$3mod4. So letxEl$,+.(C2”;A) 

and assume r = 2 mod 4 and * = 3 mod 4. 

Supposing s is even, 8*(S’) IE*(C~.; A) is surjective in bidegree (s, *), so in a trun- 

cated spectral sequence x lifts to an infinite cycle in I?*(S’ ), which survives to the 

E-term. Thus d’(x) = 0. 0 

Proposition 3.11. d’ = 0 on I?*(&; Z/2”) f or rE2mod4, n21 and v=l or 2, as 

long as d’ is shorter than the jrst nontrivial odd differential in this spectral sequence. 

Proof. Fix r = 2 mod 4 with r <ro(n, v). By Proposition 3.10(4) it suffices to show 

that d’(x) = 0 for x E_&,*(C~~; Z/2’) with s odd and * -3 mod4. Fix attention on 

such a bidegree (s, *). We shall first show that d’(x) = 0 when n is sufficiently large. 

Thereafter we use that the Verschiebung maps V, are isomorphisms in odd columns in 

the given range, except for V, with Z/4-coefficients. Hence d’(n) = 0 also for smaller n, 

when v = 1 and n > 1 or v = 2 and n > 2. We handle the exceptional case of _!?*(Cl; Z/4) 

separately at the end. 

Let rr : Z --f Z/2’ be the ring surjection and consider the maps of spectral sequence 

terms 

62(c*.)E~k2(c~“; Z/2”), 

B’(c*$55%(c2~; Z/2”). 

Let M = 7’*(Z), ” Z/ZM in the given fiber degree. Then E,:,*(X) is a map kS(&;M) 

+ fi-‘(C2.; M/2’), which f or s odd is the natural homomorphism 2”(M)+2”(M/2”). 

This map is surjective if (and only if) m Imax{n,v}. Hence E,:,,(z) is surjective for 

n sufficiently large. 

In the odd columns of ,!?*(CZ~) we have I?2(C2,)=k(C2”) and d’=O for r<ro(n,v). 

For /Z?*(CI~ ) is concentrated in odd fiber degrees above the horizontal axis, so all even 

differentials originating above the horizontal axis are trivial. Furthermore the classes 

on the horizontal axis have even filtration degree, so the even differentials supported 

on them land in even columns. 

Thus any class XE&,*(CI~;.Z’/~‘) is represented by a class ~~_6:,*(&;2/2“) 

surviving to E’, which for n sufficiently large lifts to a class z E E?:,.+(C’zD ) with 
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E2(rc)(z)=y. Then z survives to E’ and d’(z) = 0. Hence E’(Z)(Z) =x and d”(x) = 0 by 

naturality. 

The exceptional case remains. We assert that d2 = 0 on E*(Cz; Z/4), and shall soon 

see that rs(l,2)= 5, so this claim will complete the proof. The Verschiebung map 

Pj induces an isomorphism in odd columns and fiber degrees * s 3,4mod 8, when 

we use mod four coefficients, so d2 = 0 when * = 3 mod 8. Finally, when * E 7 mod 8 

the coefficient extension E : E2(Cz; H/2) + E2( C2; Z/4) induces an isomorphism in fiber 

degrees * = 0,7mod 8, and since d2 = 0 in the case A = Z/2 the same holds with 

A = Z/4 in these bidegrees. 0 

Thus only d’-differentials with r - 0 mod 4 need to be considered before the first odd 

differential appears, in all the spectral sequences under consideration, and the first odd 

differential (if any) is always of length r = 1 mod 4. 

4. The Cpspectral sequence 

The E2-term of E*(C2; Z/2) can be given a formal algebra structure as follows: 

This is different from the algebra structure composed from the subalgebra structure 

on T*(Z; Z/2) inherited from HzpeC(T(H); Z/2), and the product on Tate cohomology, 

where the relation UT = 0 would have been replaced by u: = t. 

Theorem 4.1. The spectral sequence &*(C2; Z/2) is an algebra spectral sequence, in 

the sense that the difSerentials are derivations, when the E2-term is given the formal 

algebra structure above. 

The d2- and d3-d@erentiaIs are zero. The d4-diferentials are determined by d4(t) = 

t3e3 and d4(u1 ) = 0, and that e3 and te4 are infinite cycles. The d5-dtrerentials are 

determined by d5(ul) = t3e4, and that t2 and tP2 are injinite cycles. 

The spectral sequence collapses at the E6-term, so E6 = Em, and it converges 

additively to 7r*(fi(C2, T(Z)); Z/2). Thus 

P(C2; Z/2) g Zj2[t2, tP2,e3]/(e: = 0) 

and so 

7c*@(C2, T(Z)); 2/2)” 

Z/2 if*-0,3mod4, 

0 otherwise. 

Proof. We consider the double ladder of spectral sequences I?*(&; A) with n > 1 

and A = Z/2 or H/4. By Propositions 3.10(4) and 3.11 we have d2 =0 and d3 = 0 in 

each case. Thus the nonzero odd differentials in these spectral sequences have length 

at least 5, and so the Frobenius and Verschiebung maps induce abstract isomotphisms 
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of E4-terms and d4-differentials between the E4(Czn; Z/2) for n > 1, and likewise for 

the E4(C,.; Z/4) when n > 2. 

First we determine the d4-differentials originating in even columns. We will freely 

use the formulas for F,, I&, p and E from Lemmas 3.3 and 3.6. 

By Proposition 2.7(2) d4(t-’ ) = te3 in E4(C,; Z/2), so via the F,, which are isomor- 

phisms on even columns, d4(t-’ ) = te3 in all E’(C,.; Z/2) for n 2 1. By p, which is 

surjective in fiber degree zero and an isomorphism in fiber degree three, d4(t-‘ ) = tf3 

in E4(Cz.; Z/4), both for n = 1 and for n > 2. 

By the algebra structure in the Z/4-spectral sequences, d4(ti) = tff2f3 for i odd, 

and 0 for i even, in E*(C2”;2/4) for all n > 1. Via p it follows that d4(t’) = t’+‘e3 

for i odd, and 0 for i even, in E*(&; Z/2) for all n > 1. Thus d4 from the even 

columns of the horizontal axis is completely determined. 

Next e4 maps to tf4 in E*(S’;Z/4) by Theorem 1.9(l), so tf4 is an infinite cycle 

there, and in E*(S’ ; Z/4). Since it survives to E4(C2; Z/4), it is also an infinite cycle 

there, by the group restriction over C2 c S ‘. Thus tf4 is also an infinite cycle in all 

the intermediate E*(C&; Z/4) for n > 1. 

By the algebra structure on mod four homotopy it follows that d4(t’f4) = tif2,f3f4 

for i even, and 0 for i odd, in E*(C2,$; Z/4). The product ,fx f4 = 2f7 is nonzero in the 

E4-term when n > 2, but is zero when n = 1. 

Via I-:, which is an isomorphism in fiber degree four and injective in fiber degree 

seven when we assume n > 2, we get d4(t’e4) = tif2e3e4 for i even, and 0 for i odd, 

in E*(C2”; Z/2). Finally the same formulas hold for n = 1 in E*(C,; Z/2) by com- 

parison over Fl. Thus d4 from the even columns and fiber degree four is completely 

determined. 

3, t K3(Z)2 maps to the permanent cycle ,f3 in each E*( G; Z/4), by group and 

coefficient reduction from E*(S’ ), using Theorem 1.5(2). So f3 is an infinite cycle in 

each E*(C,.; Z/4), and similarly for e3 in E*(C$; Z/2). 

Similarly c4 E K4(Z2; Z/4) maps to the infinite cycle t2fs in E*(S’; Z/4), by Theo- 

rem 1.9(5), and so by group reduction t2fg is an infinite cycle in each E*(C2.;2/4). 

Thus the classes fs and t2 fg act upon each spectral sequence E’(C2”; Z/4), as long 

as the respective class survives to the E’-term. In particular d’(,f3 x) = f3 . d’(x) and 

d’(t2f8 . x) = t”,fs . d’(x). 

We now know that f3 is a permanent cycle for all n, so the action of f3 propagates 

through to Em. For the only possible differential affecting f3 would be d4(t2), and 

we have just seen that by the algebra structure on mod four homotopy d4(t2) = 0 in 

this case. 

We also know, from bidegree considerations, that t2fg survives at least to the ES- 

term. So t2f8 acts upon the E’-terms of E*( C2”; Z/4) for all n > 1 when Y < 5. 

(In fact t2fg survives to E9 in E*(Cz; Z/4) and to E” for n > 2, so the action of t2fg 

on the former spectral sequence lasts through to the E9-term. Furthermore E*(C,; Z/4) 

collapses immediately after that stage. We will not need these facts, and omit their 

proof. ) 
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By the module action of the mod four spectral sequences upon the mod two spectral 

sequences, it follows that f~ acts upon ,!?(CZ.; Z/2) as multiplication by e3 in the 

formal algebra structure, for all n > 1 and r < 03. 

Similarly, t2fs acts upon k(&; Z/2) as multiplication by t*ei in the formal algebra 

structure, for all n > 1, when t2fs survives to the F-term of ~*(CZ~; Z/4). So this holds 

at least for r < 5. 

Combined with our results in fiber degrees zero and four, this completely determines 

the d4-differentials from the even columns in the spectral sequences under consideration. 

In summary, d4 acts as a derivation, with d4(t-‘) = te3 and d4(te4) = 0 in .@*(&; Z/2), 

while d4(t-‘) = tf3 and d4(tf4) = 0 in /?*(&; Z/4). 

Next we turn to the odd columns. 

By Proposition 2.7(3) d5(t-*u1) = te4 in ,@*(C2; Z/2), so the first nonzero odd dif- 

ferential among the 8*(C2.; Z/2) with n > 1 is a d5-differential. In the notation of 

Section 3, ~-a(l)= 5. Hence all d5-differentials from even columns of E*(C2;2/2) are 

zero, and all d5-differentials in 8*(&; Z/2) with n > 2 are zero. This was the content 

of Proposition 3.8. 

So d4(t-*ul)=O in ,@*(C~;i2/2). By V, we get d4(t-*u,)=O in 8*(&;2/2) for 

all n> 1. 

By p we get d4(te2uA)=0 in 8*(C2.; Z/4) for all n. The algebra structure and 

d4(t2) = 0 implies d4(uL) = 0 for all n, and so d4(t’uA) = d4(ti)u, when n 2 2, while 

d4(tiu’,)=0 in the case IZ = 1. These products were discussed in Lemma 2.5. 

Also tf4 is an infinite cycle, as above. So we compute 

d4(tiu, f4) = d4(t’-b:,)tf4 = d4(ti--l )u,tf4 = d4(tif4) . u:, 

in i?*(C&; Z/4) for n > 2. 

By p we get d4(tiu,) = d4(ti)u, in k*(C2.; Z/2) for n > 2, and by E we get d4(tiu,e4) 

= d4(t’e4)u, in the same spectral sequence, when n > 2. 

By fi the same two formulas also hold for n = 1. 

So by E we get d4(tiq f4) = ti+2u{ f7 # 0 when i is even, and 0 when i is odd, 

in B*(C2; 214). 

This determines d4 on fiber degrees zero and four in all the spectral sequences being 

considered. The behavior in the remaining degrees is determined by the action of the 

surviving cycles f3 and t*fg, as in the even column case. The odd columns and odd 

fiber degrees of 8*(C2; E/4) might be thought to be an exception, but for bidegree 

reasons all d4-differentials are zero there. 

In conclusion, d4 acts as a derivation on all of 8*(C2”; Z/2) for n > 1, with respect 

to the formal algebra structure, and is determined by d4(t-‘)= te3 and d4(u,) = 0. 

We note that the differentials mapping between odd columns are abstractly isomorphic 

to those mapping between the even columns, only shifted one degree to the left. 

Of course d4 acts as a derivation on all _!?*(C2.; Z/4), and for n > 2 it is determined 

by d4(uL) = 0 and the algebra structure. The action of d4 on _@(Cz; Z/4) is also 

completely known. 
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In particular t2 and tp2 survive to ~*(CZ”; B/4) for all n > 1, and so act invertibly 

on all the E’-terms considered for r < 8. An easy inspection shows that the action 

of t2fg is periodic on the E5-terms, i.e., the multiplication by t2fg is injective. For the 

E*-terms are t*fs-periodic, and the d4-differentials preserve this symmetry. 

Next we turn to the d5-differentials of fi*(&; LI) for LI = Z/2 and Z/4. 

The invertible action of t2, and the periodic action of t2fg, shows that it is sufficient 

to determine the d5-differentials originating in bidegrees (s, *) with 1 < s 54 and 0 2 * 

< 7. Furthermore the action of f3 determines the behavior of differentials originating 

in fiber degrees three and seven from those originating in fiber degrees zero or four, 

except in the case of l?*(C2; Z/4). 

We already noted that d5(tp2ul) = te4 # 0 in k*(C2; Z/2). So ro( 1) = 5 and d5 = 0 

throughout ~*(CZ~; Z/2) for n > 2. 

We now focus on ,??*(C2; Z/4), in fiber degree zero. d5(t-*u’,) = tf4 by E. d5(tp2) = 0 

since the target group supports a nonzero d4-differential. t-’ supported a d4-differential, 

and does not survive to the ES-term. So only t-‘ul, remains, and we claim that 

d5(t-‘u;) = 0. 

To see this, note that c4 H t2 fg is an infinite cycle, but maps to zero in T*(Z; Z/4), 

so cannot survive to Em, i.e., is a boundary. A differential hitting it must come from 

t-‘u, f4 or te3ui. Now 

d5(t-‘u2 f4) = d5(t-*u; . tf4) = tf4 . tf4 = 0 

in b*(C4; Z/4), so by vi we get d5(tp1ul f4) = 0 back in 8*(C2; Z/4). Thus d9(tp3u{) 

= t2fg. In particular t2fg survives to the E”-term. Hence d5(tp3u’,)=0, and acting 

by t2 we get d5(t-‘ui) = 0, as claimed. 

d5 from fiber degree zero for fi*(C2; Z/2) is now completely determined by noting 

that d5(tW2) = 0, using E. 

Next we consider ,@*( C4; Z/4), beginning in fiber degree zero. d5(2ui) = 0 and 

d5(t-2)=0 since the target groups are zero. d5(2t-‘)=O by comparison with F2, 

for 2t-’ survives to l? _2,s(Cs; H/4). And using F1 we get d5(t-*ui) = tf4. 

In fiber degree four we have computed d5(t-‘u2 f4) = 0. Next t-‘f4 is a d5-boundary, 

while tW2u2 f4 and th2 f4 support d4-differentials. Thus d5 = 0 from fiber degree four. 

We return to ,!?*(CZ; Z/4), in fiber degree four. We have already noted that d5(t-’ ul 

$4) = 0. The class t-If4 is a d5-boundary, and tp2u1 f4 supports a d4-differential, so 

it remains to consider d5(tp2f4). It is 0 or u{ fg, but d5(u{fg)= t2.fg . tf4 #O, so 

since d5 o d5 = 0 we can only have d’(t-* f4) = 0. Hence d5 = 0 in fiber degree four 

in k*(C2.;2/4) for n= 1 and 2. 

It remains to consider the d5-differentials in 8*(C2; Z/2) from fiber degree four. 

t-led is a d5-boundary, while t-2ule4 and t-2 e4 support d4-differentials. We claim 

2 d5(t-‘ule4) = t e 4’. For by Theorem 1.9(5) 272 l K4(22;Z/2) maps to t2ei, while it 

maps to zero in T4(Z; Z/2), whence t2ei must be a boundary. For bidegree reasons 

it must be hit from teje4, t-‘ule4, tp1e3 or tp3 ~1. The first is excluded since d2 = 0. 

The latter two die after the E4-term. The claimed d5-differential is the only remaining 

possibility. 
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8 

7 

Fig. 4.2. I?*(Cz; Z/4) + m(fi(C2, T(Z)); Z/2) 

This completes the determination of the d5-differentials of ,!?*(Cz”; A) from fiber 

degrees zero and four, when n = 1 or 2 and A = Z/2 or Z/4. The actions by t2, f3 and 

t2fg determine the remaining d5-differentials in these cases, except in the odd columns 

and odd fiber degrees of l?*(C,; Z/4). 

Here d5(tp2ulf3) = tf7 by p, d’(t-‘u{fT) = 0 by E, and te2u’, f7 is a d4-boundary. 

At the moment d5(t-‘u1 f3) remains undetermined by these naturality arguments. (How- 

ever, one can prove that t-‘ul f3 is an infinite cycle.) 

With this exception, the d5-structure is now settled. For d5 = 0 everywhere in _&*(Cz”; 

Z/4) with n > 3, essentially by Proposition 3.8. 0 

It is now high time to give a picture of the spectral sequences. Instead of drawing 

in all the differentials, we have labeled the source and target of each nontrivial d’- 

differential by r and Y’, respectively, while m denotes a class surviving to Em. When 

iz = 1 the group in each bidegree is either Z/2 or trivial. 

In the proof of Theorem 4.1 we determined the d4- and d5-differentials in Fig. 4.2, 

as well as the d4-differentials and most of the d5-differentials in Fig. 4.3. The remaining 

d5-, d*- and d9-differentials in Fig. 4.3 are as indicated, but will not be needed for the 

proof of Theorem 0.2, and we omit the proofs. 

The d4-differentials of E*(C2; Z/2) determine d4-differentials of E*(S’; Z/2), and 

thus some additive extensions in E*(S' ) =+ T* T(Z)!f . 

Corollary 4.4. Consider the additive extension 

~/2a~E~_4,4j+3(S1)~B~E~4j_,(S1)N~j2c 

of Eq*(S’). When iz j mod 2 the extension is split, so BgZ/2a @ Z/2”. When 
i $ j mod 2 the extension is cyclic, so Br Z/2 a+c. Here i<O and j> 1, while a= 
vz(j+ I)+ 1 and c=vI(j)+ 1. 

Proof. Consider E*(S’ ) truncated to the columns 2i - 4 < s < 2i, and its mod two ana- 

log E*(S’; Z/2). There is a nontrivial d4-differential landing in bidegree (2i - 4,4j+3) 
precisely if i $ j mod 2. The classes surviving in total degree 2i + 4j - 1 form a 
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-6 -5 -4 -3 -? -1 0 1 2 3 4 5 6 

Fig. 4.3. k*(C*; H/2) 3 m(n(Cz, T(H)); 214) 

composition series for B/2, so B is cyclic precisely when only the class in bidegree 

(2i, 4.j - 1) survives. Otherwise, B/2 has order four, whence B has two generators. 0 

The &-differentials in &*(C,; Z/4) (indicated in Fig. 4.3) which originate in even 

columns will lift to E*(S’ ; Z/4), and correspond to additive extensions across eight 

filtration degrees in ET,(S’). W e 1 eave it to the interested reader to make the resulting 

extensions explicit. 

We next wish to complete the proof of Theorem 0.2, by verifying the condition of 

Lemma 2.3 that pi : T(Z) + fi(C2, T(Z)) induces an isomorphism on mod two homo- 

topy groups in nonnegative degrees. 

To achieve this, we make a comparison with the analogous constructions related to 

the K-theory of the finite field IFz, which were studied in [ 111. The ring map rr : Z + 52 

induces a map of ring spectra with S’ -action rc : T(Z) -+ T( jF*), and thus of the associ- 

ated fixed point, homotopy fixed point and Tate construction spectra. Let E*(G, [F*; A) 

and fi*(G, [Fz; A) denote the corresponding spectral sequences, abutting to 7t*(T(F2)jG; 

A) and rc*(a^-o(G, T([Fz)); A), for G C S’ and A as above. 

Lemma 4.5. T*([Fz) E 2/2[x2] with x2 E Tz(lF2). 
T*(F2; Z/2) E Z/~[X,,X~]/(X: = 0) in the subalgebra structure inherited from 

Hi’“‘< T( IF2 ); Z/2). 
T*( F2; Z/4) % Z/2[y,, y2]/( yt = 0) in the mod jbur homotopy algebra structure. 

Here p( y, ) = 0, p(yz) =x2, E(XI ) = ye and 4x2) = 0. 

Proof. This all follows from Section 4 of [ 111, except the mod four algebra structure. 

NOW y; = iz(x$)#O, and j2(y1 y;) = y; # 0, so yi y; #O. It remains to check that 

y: = 0, but p( y:) = m(y, A p(yi )) = 0 and p is an isomorphism on Tz(F2; Z/4). 0 

Proposition 4.6. (1) The spectral sequence .!?*(CZ, F2; Z/2) is an algebra spectral 
.sequence, with 

E2 =2/2[t,t-‘,ul,xl,x2]/(u; =t,xf =0) 
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and d2(x1) = tx~, while d*(u~) = d*(t) = d2(x2) = 0. Thus 

E3 = E” = Z/2[t, t-‘, ZQ]/(U; = t) 

and 71*(~(C2,T([F2));2/2)N2/2 for all *. Furthermore 

r; : TV21 + fVC2, W2)) 

induces an isomorphism on mod two homotopy groups in all nonnegative degrees, 

whence is a connective two-adic equivalence. 

(2) The spectral sequence 8*(C2, [F2; Z/4) is an algebra spectral sequence abutting 

to n*(k(C~, T([F2)); Z/4), with 

E2 = U2[t, t-‘, us, ~1, y21/@: = t, y: = 0) 

where d2=0 everywhere, d3(u1)=t2y2, and d3(t)=d3(yl)=d3(y2)=0. Thus 

E4 =EOO = Z/2[t,t-‘, y,]/(yf =O). 

(3) The spectral sequence E*(C2, [F2; Z/4) abutting to ~*(T(Ez)~~~; Z/4) has 

Em = U2[t, YI, y2lHy: = 0, t2y2 = 0). 

So n*( T(LF2)CZ; Z/4) is represented by the classes Z/2[yl, y~]/(yf = O){t, 1) in non- 

negative degrees. 

Proof. The first part is from Section 4 of [l 11, and the third follows by truncating the 

results of part (2) to the upper left quadrant. For (2) we compare with the mod two 

case: 

~‘*w*, E2; 214) 
P 

I fi*w2, E2; 77/2) 

E is an isomorphism in odd fiber degrees and zero in even fiber degrees, so d* = 0 
from odd fiber degrees on the left. The generator of 7rznn(C2, T([F2)) Z Z/2 maps to the 

permanent cycle t-” on the right, under coefficient reduction, which factors through p. 

Since p cannot increase filtration degree, tr” must be an infinite cycle on the left, too, 

for each integer n. 

Each 7r~,,T( [F2)” = Z/4 by [ 11, Theorem 4.51. So x2 E 712( T( [Fz)‘~; Z/2) is hit from 

Q(T(IF~)~~; Z/4) under p, and the only class that can hit it must stem from ~2, so y2 

survives in E*(Cz, lF2; Z/4). But t-’ already survives in this total degree in E*(Cz, [F2; 

Z/4), abutting to T2([F2; Z/4)!% Z/2, so y2 is a boundary there, i.e., d3(t-2u1)= ~2. 
Hence d*(t-*uI)= 0, and since each t” is an infinite cycle we get d2(u1)=0. 

u~xzE~~(T([F~)~~;Z/~) is hit from ~~I(T(LF$~;ZT/~) by p, so either uty2 or yr 

survives. But d3(u1 ~2) = t’yz # 0 by the algebra structure, so it is yt which survives 

in E*(C2, [Fz;Z/4). It cannot be a boundary in E*(C~,lF2;2/4), so y1 survives there 

too. Thus d3(u1) = t2y2 propagates by the t” and yl, to completely determine the latter 

spectral sequence. 0 
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We can now prove our first main theorem. 

Theorem 4.7. The map fi is a connective two-adic equivalence. Hence the induced 

map 

r, : T(Z)? 4 T(z);C2[0, 03) 

is a homotopy equivalence. 

Proof. By Lemma 2.3 it suffices to prove that ti induces an isomorphism in nonneg- 

ative degrees from T*(Z; Z/2) ” Z/2[ ej,ed]/(ef = 0) to rr*(fi(Cz, T(Z)); Z/2), which 

has associated graded groups 

EW = Z/2[t2, te2, ex]/(ef = 0). 

We use the following commutative square: 

T(Z) x T(E2) 

As noted above the right hand vertical map is a connective two-adic equivalence. 

ei E rdn(T(Z); Z/2) maps to ~22” E Q,(T([Fz); Z/2) by Theorem 1.1(c) of [4]. And xi 

maps under pi to t- 2n in ,@*(Cz, IF,; Z/2), modulo terms of lower filtration. 

Hence fi(ei) E r~~(fi(C~, T(Z)); Z/2) must map to t-2n #O under rc and thus is 

nonzero of filtration > 4n. The only such class in total degree 4n is t-2n, i.e., fi(ej) = 

t-2n, for all n > 0. 

From Theorem 1.5(2), ,? E Ks(Z)z maps to gs in both T*(Z)2 and Ba(C2), whence 

integrally ii (gs) = 93. Using the action of integral homotopy upon mod two homotopy, 

we get fl(eTei)=e$ -2n for all n > 0, and the theorem follows. 0 - 

Remark 4.8. If we replace T(Z) with f(Z) = A( C2, T(Z)) in the spectral sequence 

8*(C2; Z/2), we effectively invert e4. For n*(F(Z); Z/2) = Z/2[e3,e4,eL1]/(ef = 0) = 

T*(Z;Z/2)[e;‘]. Then all the surviving cycles in ,!?“(C2;Z/4)[e41] would be hit 

by differentials crossing the horizontal axis, and the abutment would be zero. So 

Ql(C2, P(Z)) Iv *. 

Similar remarks apply for the mod four spectral sequence. The permanent cycles 

in the upper half plane spectral sequence i*( C2; Z/4) are precisely the boundaries of 

differentials crossing the horizontal axis in the extended, full plane spectral sequence 

f?*(Cl; Z/4)[fs-‘1 obtained by inverting fs. For rr*(p(iZ); Z/4) = T*(Z; Z/4)[&‘]. 

This observation provides an alternative way of organizing the present calculation. 
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5. Short exact sequences of spectral sequences 

We continue by establishing Proposition 5.4, which gives a criterion for when 

a cofiber sequence relating three filtered spectra (left, middle and right) gives rise 

to short exact sequences of E’-terms for all Y, for the three corresponding spectral se- 

quences. In particular the left spectral sequence will then always inject into the middle 

one. 

Consider a cofiber sequence of spectra 

We assume X, Y and Z are endowed with filtrations {X,},, {Ys}, and {Z,},, where the 

maps Xs-l -X,, X, -+X are assumed to be cofibrations, and likewise for Y and Z. 

We also assume that the maps above respect the filtrations, and induce cofiber sequences 

We write x, =X,/&l and likewise for Y and Z, and get cofiber sequences 

Next we assume hocolim,7 _ +mXs -X and holim,,_,X, cv *, and similarly for Y 

and Z. Then associated to these filtered spectra, we have three spectral sequences: 

E.;,‘.,(x_) = %+,(X,) =+ %+1(X), 

F:,,(Y) = %+t (rs) =+ %+t(Y), 

E&(Z) = %+@A =+ 71s+4Z). 

The underline refers to the dependence of the spectral sequence on the filtration on X, 

Y or Z. Since the filtrations are assumed to be compatible, we get maps of spectral 

sequences 

(5.3) E.&(x_) LE.;r(r) -+[,(Z) SE;+,(x). 

The case r = 1 of this diagram is part of the long exact sequence in spectrum homo- 

topy associated to the cofiber sequence (5.2). If we assume that 7~+(8~) = 0 for all s, 

then this long exact sequence splits into short exact sequences, and we obtain a short 

exact sequence of El-terms 

for all s and t. 

In general we cannot expect the later terms (r > 2) of these spectral sequences to 

fit into such short exact sequences. We will now give a sufficient criterion for the 

given cofiber sequence of filtered spectra to induce a short exact sequence of spectral 
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sequences 

0 -+ E&(X_) -1-; EL,(Y) 1; El,(Z) + 0 

for all finite r,s and t. 

In our cases of interest, the spectral sequences collapse at a finite stage, so 

corresponding statements will also hold for the IF-terms. We do not discuss 

convergence questions that arise when the spectral sequences do not collapse. 

Define the maps i.E’, j,: and r’c by the cofiber sequence 

X,/X,_, i: Y$/Y,_, j: z,/z,-, ;: C(XJX,_,) 

obtained by comparing (5.1) for s and s - r. 

Proposition 5.4. If m(d,‘)=O ,for all r > 1 and s, then 

0 -+ E,;,,(x_) L lqp, A E;*,(z) + 0 

is a short exact sequence jbr all finite r > 1, s and t. 

253 

the 

the 

Proof. We begin be recalling how the spectral sequences are constructed. The filtration 

{X7}, determines maps I :X7_, --f X,, J : X, 3 XT and A : x, + zX,_ 1. There are similar 

maps for Y and Z. (We denote these maps by capital letters to distinguish them from 

the filtration preserving maps i :X 4 Y, j : Y --) Z and I? : Z + CX) Then by definition 

&(X_) =J*(kerG-’ : .s+&C) - rr,+,(X,+,-I )), 

Z,‘,,(X_) = d;‘(imIi-’ : 7c.~+,~~(X,_,) + 7~,+,_l(X,_~)). 

Here &(X_) i Z;.#) Cr I&(X_) = rr,+@~), and by definition 

The differential d{,, : I&(X_) + E;_,,t+r_, _ (X) takes the class of a with d*(a) =ZL-‘(h) 

to the class of J*(b). Similarly for Y and Z. 

We will prove by induction on r that there are short exact sequences 

for all r > 1, and all s and t. 

When r = 1 we have B,,,(x) = 0 and Z&(x) = E,‘,,(x), and similarly for Y and Z. 

By assumption n*(&) = rc*(ai ) = 0, so the long exact sequence in homotopy associated 

to the cofiber sequence (5.2) shows that the sequences in (5.5) are exact for r = 1. 
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Assume by induction that the sequences in (5.5) are exact for a given r 2 1. We 

will show below that the sequence involving .Zrfl (omitting the bidegrees and X-, Y- 

or Z-argument for brevity) is short exact. By the exact sequence 

and the inductive hypothesis it then follows that the sequence involving B’+’ is short 

exact, using the 3 x 3-lemma repeatedly. By the exact sequence 

O+B’+’ +Zr+’ +E’+’ +(I 

it also follows that the sequence involving E’+l is short exact. This will complete the 

proof of the induction step. 

It remains to show exactness of the sequence involving Z”+‘. The composite 

induces a map from the short exact sequence involving Z’ to the short exact sequence 

involving E’, by the inductive hypothesis. The kernel of the composite map is .Z;+l, 

so by the snake lemma we have an exact sequence: 

0 + zr+yx_> + z’+‘(r) -z’+‘(z). 

We now prove that the right-hand side map is surjective. First compute: 

Z,‘,:‘(X_) = d,‘(imIg : 7l,+t-l~Xs--r-l~~7ls+f-l~Xs-l~~ 

=d,‘ker(n,+,-l(X,-l)i7l,~+t-l(Xs-1/Xs-~-l)) 

=ker(n,+,(X,)i7l,+t-1(Xs-l/Xs-~-l)) 

= im(%+&W?-r-l) + %+t<X>>. 

Similarly for Y and Z. Hence there is a commutative diagram 

rr*(i;+‘) x*(ar+l 1 
%+t(K/Ys--r-l> - %+t(Zs/Zs-r-l) A %+t-lK&L-I > 

where the top row is exact, and the vertical maps are surjective. Thus, if n*(8:+’ ) = 0 

it follows that rc*(j;+‘) is surjective, and so the lower map must be surjective too. 

This completes the proof. 0 
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6. Limiting cases of the Tate spectral sequences 

This sections achieves two aims. The first is to study the skeleton spectral sequences 

for the St-Tate construction on T(Z), with coefficients (i) in the mod two Moore 

spectrum, (ii) in the smash product of two mod two Moore spectra, and (iii) in the 

suspended mod two Moore spectrum. These are related by a cofiber sequence, and to 

establish a product structure on the first spectral sequence we use an external pairing 

landing in the second spectral sequence, and internalize it using the injective map of 

spectral sequences afforded by Proposition 5.4 of the previous section. This procedure 

succeeds for the Tate construction on T(Z), as established in Proposition 6.5. 

The second aim of this section is to relate the C2”-Tate constructions to the S’-Tate 

construction, by passing either to a limit over the Frobenius maps, or to a colimit 

over Verschiebung maps. These results substitute for a product structure on the mod 

two spectral sequence for the &-Tate construction on T(Z), which we are unable to 

construct directly. The main result in this direction is Proposition 6.7. 

We recall Greenlees’ doubly infinite filtration of _!?S’. Here l?S’ is defined by the 

cofiber sequence 

(6.1) ES: 5 So + 6s’ + .&ES’. 

(see e.g., Section 2. X+ denotes X with a disjoint base point added, and by definition 

C+X = C(X+ ).) As usual we take the unit sphere S(cX) as a model for ES’, and the 

one-point compactification So% as a model for ES’. Then ES’ has the odd spheres 
filtration {ES: }.$ with 

ES;, = ES;,+, = S(C’) =S2’-’ 

for all i>O. 
Greenlees’ filtration {ES,] }s has 

Es;i = .a;,,, = SC1 

for all integers i. When i is negative, this requires a spectrum-level interpretation. The 

corresponding filtration on the Tate construction 

ti(S’, T(Z)) = [Es’ A F(E$, T(Z))]S’ 

may be called the skeleton jiltration. 
The right hand part of the cofiber sequence (6.1) admits the filtration So -+ Sc’ + 

C+S(@‘). It induces the homotopy norm-restriction cofiber sequence 

and corresponding maps of spectral sequences relating the three rightmost terms. Classes 

mapping nontrivially by Nh are represented in the spectral sequence for A(S’, T(Z)) by 

classes supporting differentials which cross the vertical axis. See Theorem 2.15 of [6]. 

Also see Diagram 10.2 below. 
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Briefly writing X= Q(S’, T(Z)), the skeleton filtration has &=Xzi+’ = [So:‘r\F(ES:, 

T(Z))Is’. Hence the odd filtration layers are trivial, while the even filtration layers are 

X2! =Xzi/Xzi-’ = [C2’-‘(S:) A F(ES:, T(Z))]” Z C”T(Z) 

by the Adams isomorphism (see [13, Theorem 11.7.11). Here we are using 

c$‘,s@‘-’ g c2i-l(s:). 

So the E2-term of the spectral sequence is concentrated in even columns, each of which 

is represented by a copy of T(Z). With mod two coefficients the E2-term is the S’-Tate 

cohomology of rc*(T(Z’); Z/2). 

Let M = So/2 be the mod two Moore spectrum, defined by the cofiber sequence 

SO ASo &M 1-,S’. 

Smashing with M gives the associated cofiber sequence 

MAS”~MASo%M/jM~M/jS’. 

Of course M A So % M and M A S’ ” CM. Recall that 1 A 2 above factors as 

(see e.g., [17, Section I]). 

Lemma 6.3. For any jiftrution subquotient X:_, =Xs/Xs_r_~ of the skeleton jiltration 

on @S’, T(Z)), multiplication by y induces the zero homomorphism on the two- 

torsion elements 

r* : zn*Gq_,> + ~*+l(X#-,)/2. 

Hence the mod two homotopy of each Xl_, has exponent two, and the Jiltered cofiber 
sequence 

induces a short exact sequence of E’-terms of spectral sequences, for all r. 

Proof. A spectral sequence converging to 7t*(X,S_,) is clearly given by truncating the 

skeleton spectral sequence for @S’, T(Z)) to filtration degrees s-r through s. The E2- 
term of the resulting spectral sequence is concentrated in the even columns, each of 

which contains a copy of n*T(Z). The only differentials will originate on the horizontal 

axis, for bidegree reasons. Hence all two-torsion in the abutment X*(X,“_,) sits in 

(even, odd) bidegrees. Multiplication by q takes such a class to an even total degree, 

in positive fiber degree, where the abutment is zero. Hence the product is trivial in 

rc*+‘(<f_,.)/2, as claimed. q 
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Remark 6.4. Note that the corresponding argument for the Cl”-Tate construction fails, 

although the same conclusion will eventually be seen to hold. Our argument uses the 

“imparity” of the torsion in n* T(Z) in an essential way, and might not generalize to 

T(A) for a general ring spectrum (FSP) A. However, for any Z-algebra (ring) A there 

is an equivariant module action of T(Z) on T(A), which greatly structures the behavior 

of the spectral sequences computing rrt( T(A)hC’” ; 212). This may become useful in the 

computation of TC(A )2. 

We now wish to prove that ,!?*(S’; Z/2) IS an algebra spectral sequence, in the sense 

that its differentials are derivations. The E2-term has the formal algebra structure 

E2 *,* =fC-*(S’,71*T(z;z/2))=z/2[t, tt’,ej,e&l/(e: =O). 

Here t E El,,, while ck E Ei k , for k = 3,4. (See the discussion following (2.4).) 

The pairing So AM A So + M shows that the spectral sequence above is a left and 

right module over the integral spectral sequence l?*(S’ ), which is an algebra spectral 

sequence, and that the two module actions agree. 

Proposition 6.5. The skeleton spectrul sequence f?*(S’; Z/2) converging to the mod 

two homotopy of A(S’, T(Z)) is un ulgebra spectral sequence, in the sense that its d{fl 

ferentials are derivations with respect to the ,formul algebra structure. By truncation, 

the same claim holds for the skeleton spectral sequence E*(S’;Z/2) converging to 

the mod two homotopy of T(Z)hS’. 

This result is somewhat surprising, since the obstruction to splitting the right unit map 

1 A i: A4 .AS’ -A4 AM factors through r~, which maps nontrivially to te3 in E”(S’; 

Z/2) and to t3e3e4 in @(S’;Z/2). In particular we do not claim that there is an 

algebra structure on the target r~+(l@S’, T(Z)); Z/2) of the spectral sequence, nor that 

it has a multiplicative filtration with associated graded algebra compatible with the 

E”-term of k*(S’;.Z/2). This is in fact false. 

Proof. Inductively assume that .k*(S’; Z/2) is an algebra spectral sequence up to the 

E’-term. On the horizontal axis we may then suppose that the E’-term consists of the 

integral powers of some class t2’. The classes 1, ted, e3 and te3e4 are hit by 1. t&, 

1. and K in K*(sz; z/2). By the action of the image of <44~K4(22; Z/4) as formal 

multiplication by t2ei it follows that all the classes (te,)j and ej(ted)-i are infinite 

cycles. 

Clearly all differentials in k*(S’; Z/2) must be of even length, and originate in (even, 

even) bidegrees. Any class in an odd fiber degree of p(S’; Z/2) lifts to the integral 

spectral sequence (by a universal coefficient sequence argument), so any formal product 

involving it lifts to a natural product formed using one of the pairings So AM + M or 

M A So + M. Since the formal product extends these left and right module pairings, 

any differential on such a formal product is a derivation. 
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The remaining classes sit in (even, even) bidegrees, and form, by the inductive 
hypothesis, a free Z/2[t2’, t-2i]-module on the powers of te4. We may assume r is 
even, Now we use the map of spectral sequences i* considered above, from the skele- 
ton spectral sequence for fi(S’, T(Z)) AM (i.e., I?*(S’; Z/2)) to the skeleton spectral 

sequence for &S’, T(Z)) AM AM. By Lemma 6.3 i* is injective on all I?‘-terms. 

Let x and y be nonzero classes of (even, even) bidegrees in the E’-term of ,!?*(S’; 
Z/2). Then the formal product x. y is nonzero and maps under i* to the nonzero class 
in the same bidegree of the (M AM)-spectral sequence, which is x A y. The exterior 
pairing satisfies 

d’(x A y) = d’(x) A y +x A d’(y). 

By naturality i* takes d’(x . y) to the left hand side above. Each of the formal products 
d’(x). y and x.&‘(y) involve a class in odd fiber degrees, so map under i+ to d’(x) A y 

and x A d’( y ), respectively. Hence 

i*(d’(x . y)) = &(8(x) . y) + i*(x . d’(y)) 

and so by injectivity of i*, the proposition follows. 0 

Next we compare I$S’, T(Z)) with the homotopy limit of the A(&, T(Z)) over 
the Frobenius maps, and also compare C-‘o’o(S’, T(Z)) with the homotopy colimit of 
the A(&, T(Z)) over the Verschiebung maps. More precisely we wish to compare the 
limiting skeleton spectral sequences in mod two homotopy with the skeleton spectral 
sequence fi*(S’; Z/2). 

For all 12 the Tate constructions A(&, T(Z)) can be defined by 

The double covering map (S1/C2,-~)+ -+ (S’/C2” )+ and the (stable) S’-equivariant 

transfer map (S1/C2.-~ )+ + (S1/G )+ defined the Frobenius and Verschiebung maps 
below by precomposition: 

F, : fu(Cp, T(Z)) --) A(C*.+ T(Z)), 

v, : rh(c*“-‘, T(7)) -+ A(C*., T(Z)). 

The collapse map (S’/CZ~)+ + (S’/S’)+ and the (stable) S’-equivariant S’-transfer map 
C+(S’/S’) + (S’/&)+ likewise define maps for all n: 

A(S’, T(b)) 2 LQ(C*n, T(Z)), 

W(C**, T(H)) z c-‘A(sl, T(Z)). 
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In the limit we obtain maps 

(6.6) 

F : L&S’, T(Z)) -+ ho!m l&Cz”, T(Z)) 

V : hocflim fi(Cz., T(i)) -+ ZP’A(.S’, T(Z)). 
I/ 

(See [I 1, Sections 3.2 and 3.31 for further discussion.) 

As for ES’, there are doubly infinite Greenlees filtrations of ECl. for all n. But unlike 

{I!?&! }.s whose layers were nontrivial only in even filtrations, the Greenlees filtrations 

of I?C’~,~ have nontrivial layers in every filtration. Some care will be required when 

comparing the two types of filtrations. 

We may still use ES’ = S(Cm) as our model for ECz”, by restricting the group 

action, and similarly use ES’ =Scx for ECZ~. But while the Greenlees filtration of 

ECz. has 

_ 
( EC2n )2r = .&ii = S @’ 

with the restricted Cz.-action, we let (ECz”)zi+’ be obtained from S@’ by adjoining a 

C&-free (2i + 1 )-cell. This may be arranged so that for all s the sth filtration layer is a 

copy of C; C,. . Clearly this filtration corresponds to the usual two-periodic resolution 

of the cyclic group (see, e.g., [19, Section V.51). 

This Greenlees filtration for EC,. gives rise to the mod two spectral sequence 

E*(Cl”; Z/2) converging to the mod two homotopy of fi(C,.; T(Z)). The E2-term is 

given by the C2”-Tate cohomology of Q( T(Z); Z/2). The Frobenius and Verschiebung 

maps are defined by acting on (S’/Cz”)+, and hence commute with the filtrations. So 

there are natural Frobenius and Verschiebung maps connecting the various spectral se- 

quences E*(CZ~; Z/2) to one another. We describe the relationship to the S’-spectral 

sequences in the following proposition. 

Proposition 6.7. The Frobenius maps induce a two-adic homotopy equivalence 

F : fU(,S’, T(E)) --+ ho!m l&C’2”, T(Z)) 
n 

and an equivalence of spectral sequences i?*(S’; Z/2) Z limb I?*(&; Z/2). Likewise 

the Verschiebung maps induce a two-adic homotopy equivalence 

V : hocflim fi(Cz”, T(Z)) + Z-‘l?U(S’, T(Z)) 
n 

and an equivalence of spectral sequences colimV,,E*(C2”; Z/2)” C-‘.!?*(S’; Z/2), 

where the desuspension has bidegree (- l,O), i.e., is a left shiJi. 

Proof. We have a Cz”-equivariant map of filtrations 

{(E’s’),), + {(&” )s]s 

inducing for each n the map of mod two homotopy spectral sequences 

l?‘*(S’; ‘z/2) 4 fi’*(C& Z/2) 
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compatible with the Frobenius maps F,. For each n the Frobenius map induces iso- 

morphisms of E2-terms in even columns, and the zero map in odd columns (since we 

are taking mod two coefficients). Hence F, : @C2”, T(Z)) + fi( C&-l, T(Z)) induces an 

isomorphism on even columns up through the E-term, where Y =r-e(n) is the length 

of the first odd differential in t*(Cz=; Z/2). We know that ro(n) is monotonically in- 

creasing in n (by Proposition 3.8), so likewise F :_&*(S’; Z/2) &*(C~.; Z/2) induces 

isomorphisms on even columns up through the _/Y-term with Y =70(n). Hence the lim- 

iting Frobenius map induces an isomorphism of spectral sequences 

F :g*(S’; Z/2) + l$n,$*(C~ti; Z/2) 
n 

as claimed. 

In the other case, we must shift the Greenlees filtration of ES’ one step to the left. 

Then we have a C2”-equivariant map of filtrations 

inducing for each n the map of mod two homotopy spectral sequences 

B*(c,.; Z/2) 4; Z-‘l?*(s’; Z/2) 

compatible with the Verschiebung maps. (We discussed compatibility directly before 

the statement of this proposition.) On the filtration layers the Verschiebung map linking 

A(C,.-l, T(Z)) to fi(Cz., T(Z)) maps CST(Z) to itself, as the identity for odd s, and as 

multiplication by two for even S. Hence for each n the Verschiebung map induces iso- 

morphisms of E2-terms in odd columns, and the zero map in even columns (since 

we are taking mod two coefficients). Also V,, : A(C2,-l, T(Z)) + h(Czn, T(Z)) and 

V : &*(CZ~; 2/2)--f C-‘_@*(S’; Z/2) induce isomorphisms on odd columns up through 

the E’-term, where r=ro(n) as above. 

Hence the limiting Verschiebung map induces an isomorphism of spectral sequences 

V : coFmE*(&; Z/2) 3 C-‘L?*(S’; Z/2) 
” 

as claimed. •i 

This identification of the limiting form of the even and the odd columns of the 

spectral sequences i*( C2.; Z/2) will serve to replace the multiplicative identification 

made in the odd primary case, which used the long-surviving classes u, E g’(C,“; Z/p). 

7. The Cd-fixed points of T(Z) 

We determine the differentials in the Tate spectral sequence &*(Cd; Z/2), and thus 

compute ~c*(T(Z!)‘~; Z/2) up to extensions. The argument is presented so as to gener- 

alize to an inductive calculation of rc*( T(Z) c2n ; Z/2) for all n 2 2 by means of Tsalidis’ 

theorem. 
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The Frobenius and Verschiebung maps F, and V, induce isomorphisms of the even 

and odd columns, respectively, among the E2-terms of the spectral sequences L?*(&; 

Z/2) for all n 2 1. Recall (from Section 4) the formal algebra structure on these 

/?-terms: 

E2(C2fl; Z/2) = Z/2[t, t-‘, u,,ej, ed]/(ui =O, e: = 0) 

with deg(t)= (-2,0), deg(u,)=(-l,O), deg(e3)=(0,3) and deg(e4)=(0,4). 

The spectral sequence /?*( C2; Z/2) was determined in Theorem 4.1. Its first nontrivial 

differentials are the d4-differentials, which are derivations with respect to this formal 

algebra structure and determined by d4(t-’ ) = te3, d4(ul ) = 0 and the infinite cycles 

e3 and te4. Its d5-differentials are also derivations, and determined by d5(t-2u, ) = te4, 

d5(t2) = 0 and the infinite cycles just mentioned. Hence we have rs(1) = 5. Finally the 

Eh-term is concentrated in fiber degrees 3 or less, and the spectral sequence collapses 

at this stage. 

Since the first odd differentials in 8*(C2; Z/2) were of length five, there are no odd 

differentials among the f?*(C,.; Z/2) with II 22 of length five or less. This follows by 

Proposition 3.8. Hence as long as r < 5 by naturality the Frobenius and Verschiebung 

maps induce isomorphisms, in even and odd columns respectively, of E’-terms and 

#-differentials among all the _i?*(C,.; Z/2). Therefore each g*(C,.; Z/2) is an algebra 

spectral sequence through the (E4,d4)-term, with d4(t-‘)= te3 and d4(u,)=0. But 

d5 = 0 in all these later spectral sequences. 

The first possible nontrivial odd differential on f?*(C4; Z/2) has length at least 13. 

For the first odd differential originates in an odd column by the cited proposition, 

and d” = 0 if r G 3 mod 4 by fiber degree considerations. Next d’ = 0 on odd columns 

for Y? 1 mod 8 (i.e., Y = 9) by bidegree considerations, as the image of any such d”- 

differential on a d4-cycle in i*(C4; Z/2) lands in a bidegree completely killed by a 

d4-differential. Thus all d’-, d”- and d”-differentials are trivial. Hence q,(2)> 13. We 

shall see below that indeed d13 #O on i*(C4;Z/2), so q(2)= 13. 

Thus up through E I2 there are no odd differentials in i*(C4; Z/2), and again by the 

cited proposition there are no odd differentials of length 13 or less in g*(C,.; Z/2) for 

all n > 3. Thus the Frobenius and Verschiebung maps F, and V,, induce isomorphisms 

up through the E’3-terms of all these spectral sequences g*(C2,,; Z/2) with n 22. 

We now look at the even differentials in this range. First by Proposition 3.11 we have 

d’ = 0 for r = 2 mod 4 when r < 13. Furthermore d’ = 0 for r s 0 mod 8 (i.e., r = 8) by 

bidegree considerations, as again the image of any such d’-differential on a d4-cycle 

in E*(Cd; Z/2) lands in a bidegree completely killed by the d4-differentials. Hence the 

first possible nontrivial even differential after d4 is di2. 

By Proposition 6.7 above, the even columns of each _!?(C>“; Z/2) with r <ra(n) 

agree with &(S’; Z/2) through the Frobenius maps, while the odd columns in the 

same range agree with the left shift C-‘E”(S’; Z/2). Hence we can conclude: 

Lemma 7.1. All d’-d@rentiuls in l?*(Cp; Z/2) ure derivations for r < r”(n). 
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Proof. By Proposition 6.5 the differentials in /?*(S’; Z/2) are derivations. Assuming 

r<rs(n) we have 

I?(&; Z/2) “&s’; Z/2) @E(u,) 

as algebras, where E(u,) denotes the exterior algebra on a,. Since 1 is a permanent 

cycle, its left shifted image U, is a d’-cycle. For d’ to be a derivation, it must satisfy 

d’(x ’ u,) = d’(x) u, for all x in the even columns, which holds by Proposition 6.7. 

Since U: = 0 this is also sufficient for d’ to be a derivation. 0 

In particular the d’-differentials of g*(Cd; Z/2) are derivations for r< 12. We shall 

see later that also the di3-differentials are derivations, by a more indirect argument. 

By truncating ,!?*(C2; Z/2) to the upper left quadrant we obtain the spectra1 sequence 

E*(Cz; Z/2) abutting to the mod two homotopy of T(Z)hC2. On connective covers this 

agrees with the mod two homotopy of Z’(Z)c2, by Theorem 0.2. The Em-term has 

additive generators 

1, tulq; te3; ted; e3; t2ej; teje4; ule3e4; e3e4, t2e3ei, 

in total degrees zero through seven, together with their formal multiples with powers 

of ei. Hence we have the following calculation (in nonnegative degrees), 

2 
(7.2) n*(T(z)C2;2/2)r 

when *=0,7mod8, 

otherwise. 

(We shall see in Remark 8.15 that this is the correct additive structure, i.e., that 

the groups have exponent two. We shall only need the order of these groups in our 

arguments, so we omit the easy proof.) 

By Tsalidis’ theorem [20], the map fi, : T(Z)c2n-~ ,. + W(&, T(Z)) induces a two- 

adic equivalence on connective covers for all n > 1. Hence fi*( Cd; Z/2) abuts to the 

groups listed above, at least in nonnegative degrees. 

Now consider the action of the mod four spectra1 sequences upon the mod two spec- 

tral sequences. We recall from [ 171, or Theorem 1.6, the generators fn E rc,(T(Z); Z/4) 

for 12 = 3,4,7 and 8. By Theorem 1.9, the class f4 l K4(2?2; Z/4) maps to t2fg in the 

mod four spectra1 sequence E*(S’; Z/4), which in turn reduces to (te4)2 in the mod 

two spectra1 sequence E*(S’; Z/2). 

Lemma 7.3. The class 17~ H t2fs E _824,8(C2.; Z/4) is a permanent cycle for all n 2 2. 

Hence multiplication by t2.fg acts as formal multiplication by the permanent cycle 
(te4)2 on l?‘*(C&; Z/2) for all n22. In particular 

d’((te4)2 . x) = (te4)2 . d’(x) 

for all x and r. 

Thus all differentials in 8*(C2”; Z/2) propagate up and to the left by forma1 mul- 

tiplication by (te4)2. The integral permanent cycle representing II likewise propagates 

differentials vertically by forma1 multiplication by es. 
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Proof. Consider the spectral sequences E*(Cz; Z/4) and E*(C,; Z/4), and the maps F1 

and VI connecting them. In the latter sequence t2.fs is not a d2-boundary since tf7 is an 

infinite cycle (it is hit by K), not a d’-boundary since d5(t-‘uz,f4)= VI(d5(t-‘u1f4)) 

= 0, and not a d6-boundary since tr’f; = d4(tP3). The d”-differential landing in bide- 

gree (-4,s) originates in _&(C4; Z/4), which is contained in @,(C4; Z/4) = 

z/2{2tP2ui}, in light of d4(te2uL) = u*,f3. (In fact d8(tp3ui) = r:(d8(tm3u{ )) = E(O) = 0 

so E’ = E9 in this bidegree.) Then d9(2tP3ui) = Vl(d9(t-3~{ )) = Vl(t2f8) = 2t2,f8, and 

we see that t2,fs itself is not in the image of d 9. Thus t2f8 is a permanent cycle in 

E*( Cd; Z/4). A similar analysis using the V, for n > 2 shows that t2 f8 is not a boundary 

and thus survives to Em in all E*(C2”; Z/4) with ~22. 0 

The first d12-differential arises as follows. 

Lemma 7.4. In the spectral sequence E*(C4; Z/2) the classes t2i .e3 and t2’. te3e4 are 

permanent cycles jbr all integers i. There is a difl?rentiul 

d12(te2) = t4e3ei. 

Proof. By comparison with E*(S’ ), all classes in (even, odd) bidegrees are infinite 

cycles. Among these the classes t2’e3 and t2i+’ e3e4 are not d4-boundaries, and thus 

survive to EDD. Since II*(T(Z)~~; Z/2) g Z/2 in (positive) degrees * = 1,3,5 mod 8 

there can be no further permanent cycles in these total degrees. Thus all other infinite 

cycles in these total degrees are boundaries. An early case of this is the class t4e3e$ 

in fiber degree 11, which can only be hit by the given d12-differential. 0 

Lemma 7.5. Zn the spectral sequence L?*(S’; 212) the d’-difSerentials for r < 12 are 

determined by being derivations, the jbrmulas d4(t-‘) = te3 and dt2(tm2) = t4e3ei, and 

that e3 and ted are permanent cycles. 

Hence each spectral sequence _!?*(CZ~; 212) for n 22 is an algebra spectral sequence 

through the (E12,d12)-term, with differentials determined by d4(t-‘) = te3, d12(te2) = 

t4e3ei, d12(u,) = 0 and that e3 und ted are permanent cycles. 

Proof. The dl’-differential just found in E*(C4;Z/2) translates to the S’-spectral se- 

quence by the Frobenius map, and generates the remaining d12-differentials there by 

the algebra structure. (In particular d12(te4 te2) # 0. It appears to be very difficult 

to prove this within the Cd-spectral sequence without having established the algebra 

structure on the S’-spectral sequence.) 

Thus the structure of the Cz.-spectral sequences up to the E’3-terms follows from 

Proposition 6.7, and is as claimed. 0 

The last step of the induction is to determine the d 13-differentials in E*(C4; Z/2). 



264 J. Rognes / Journal of Pure and Applied Algebra 134 (1999) 239-286 

Lemma 7.6. In the spectral sequence E’*(Cd; Z/2) there are dtfirentials 

d13(t4’ . tw4u2e3) = t4’ e3(te4)3, 

d13(t4’ tP3u2e3e4) = t4’ . e3(te4)4 

for all integers i. 

Proof. Consider first the classes (te4)3es and (te4)4e3 in _!?*(C4;2/2). They are in 

(even, odd) bidegrees; thus they are infinite cycles. They are in total degrees 9 and 11, 

where by the inductive input (7.2) the abutment has order two. But by Lemma 7.4, 

the permanent cycles t-2e3 and t-‘e3e4 are already known to generate the abutment 

in these total degrees. Hence there can be no more permanent cycles in these degrees, 

and the two infinite cycles considered must be boundaries. Inspecting the E’3-term, the 

only classes that can support differentials hitting (te4)3e3 and (te4)4e3 are tP4u2e3 and 

tP3u2e3e4 respectively. Hence we must have the claimed differentials, both of which 

have length 13. 

The same argument in total degrees (9 - 8i) and (11 - Si) for any integer i, i.e., 

formally multiplying each class mentioned by t4’, implies the general case. 0 

Note that a separate counting argument is made in each case. There is no obvious 

topological action available which induces multiplication by powers of t4. The precise 

behavior in negative total degrees might be deemed troublesome, but note that this 

never affects the results in positive degrees. In fact the C2”-equivariant James periodicity 

of ,!&I proves that the differential structure in positive total degrees also propagates 

periodically across the upper left quadrant, as desired. The a priori period for the 

James periodicity is significantly longer than that realized in the spectral sequences 

under consideration, but this does not affect the argument. 

Lemma 7.7. In the spectral sequence i”(C4; 212) the d’3-dtflerentials are determined 

by being derivations, the formula d’3(t-4u2)=(te4)3, and that e3, ted and t4 are 

permanent cycles. The resulting E’4-term is concentrated in jiber degrees 11 or less, 

and so the spectral sequence collapses at this stage. 

Proof. From the formal action by es (induced by A) we conclude that there are dif- 

ferentials 

d13(t4’ . te4U2) = t4’ . (te4)3 

d13(t4’ tP3u2e4) = t4’ . (te4)4 

for all integers i. By the formal action of es and (te4)2 provided by Lemma 7.3 (induced 

by A and 64), this determines all the d13-differentials of i*(Cd; Z/2). By bookkeeping 

the classes surviving to El4 are 

1, t3u2e3e4; t3e3e4; ted; e3; t2ej; te3e4; t-2u2e3; tm2e3, t2e3ei 
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with semicolons separating the degrees, together with all their translates by integral 

powers of t4. All these classes have fiber degree 11 or less, so El4 = E”. In particular 

t4 is a permanent cycle, as claimed. 0 

The two classes in total degree zero represent the mod two reductions of generators 

of rr,~T(Z)~2 E Z2. In higher degrees rl H t3e3e4, ij2 H te4, L H e3, pc4 H t2ei = (te4)2, 

ti H te3e4 and c? H t2e3ei generate the image from K*(s2; Z/2). 

We have proved: 

Lemma 7.8. The spectral sequence 8*(C4 Z/2) is an algebra spectral sequence in the 

sense that its diflerentials are derivations with respect to the .formal algebra struc- 

ture on the E2-term. The difSerentia1.s are determined by the formulas d4(t-‘) = te3, 

d’*(tP2) = t4e3ei and d13(tt4u2) = (te4)3, and by the permanent cycles es, ted and t4. 

The spectral sequence abuts additively to n*(fi(C4, T(Z)); Z/2). It collapses at the 

E14-term, with abutment the free Z/2[t4, tP4]-module on the ,following generators: 

1, t3u2e3e4; t3e3e4; ted; e3; t2ei; te3e4; tt2u2e3; tP2e3, t2e3ei 

By truncating to the upper left quadrant we find the following. 

Lemma 7.9. The spectral sequence E*(C4; Z/2) is an algebra spectral sequence in 

the sense that its dtflerentials are derivations with respect to the formal algebra 

structure on the E2-term. The dtflerentials are determined by the formulas d4(t) = t3e3, 

d12(t’) = t*e,ei and d13(u2) = t’ei, and by) the permanent cycles e3, ted and t4. 

In nonnegative degrees the resulting E”- term has three permanent cycles in total 

degree * = 0,15 mod 16 and two permanent cycles otherwise. Hence for * > 0 the mod 

two homotopyj groups of T(Z)‘? have orders 

#~*(w>c4; a21 = 
23 when *=0,15mod16, 

Proof. The first part follows from the result for k*(C4; Z/2) by naturality and trun- 

cation. The second part holds because r2 : T(Z)c4 -+ T(Z)hC4 is a two-adic connective 

equivalence by Tsalidis’ theorem. The bookkeeping to identify the permanent cycles 

in the truncated sequence can easily be done by hand here. (The general case will be 

presented in Section 9 below.) c3 

Lemmas 7.8 and 7.9 constitute the inductive hypothesis in the case n =2 for the 

general inductive argument, presented in the next section. 

8. The induction argument 

We impose the formal algebra structure on the E2-term 

E2(C2”; Z/2) = Z/2[t, t-‘, un,e3,e4]/(ui = O,e: = 0) 
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of each spectral sequence l?*(C2”; Z/2). Let 

p(n) = 4(2” - 1) 

for all n. We make the following inductive hypothesis for a given n > 1: 

Hypothesis 8.1. In the spectral sequence 8*(Cz”; Z/2) there are difSerentia1.s 

d’(t-2k) = t2k .03 . (te4)2(2k-1) 

with r=p(k+ 1) for all O<k<n, and 

d’(t-2” . u,) = (te4)2n-1 

with r = p(n)+ 1. All d’-difSerentia1.s for r <p(n)+ 1 are derivations with respect to the 

formal algebra structure, and the classes e3, ted and tf2” survive to the Ep(n)+2-term. 

Hence, in the notation of Definition 3.7, the shortest odd differential in ~*(CZ.; Z/2) 

has length r-o(n) = p(n) + 1, at least for the given n. We write Ph(x) = Z/2[x]/(xh = 0) 

for the truncated polynomial algebra on x of height h. Let v=(i) be the 2-adic valuation 

of i. 

Lemma 8.2. The d@erentials given in the inductive hypothesis above determine the 

remaining dtrerentials in .@*(C2U;Z/2), and the spectral sequence collapses at the 

EP(“)+2-term. The Em-term is 

_P(C&; Z/2)=P2~_,(te4)[t2”,t-2”]{ l,es} $ $ P2(2k_,)(te4). t’e3{ l,u,}. 

k=v2(i)in 

Hence all dtzerentials in this spectral sequence are derivations, and the classes e3, 
ted and t*2” are permanent cycles. 

Proof. For r <p(n) + 1 there are no odd d’-differentials, so in this range each fi(C2”; 

Z/2) is the exterior algebra on u, over the even columns. Consider the even columns 

of the E2-term as a free Z/2[te4]-module on the generators t’ and t’ex. There is a 

d’-differential on t’ precisely when vz(i) = k <n and r = p(k + 1 ), which hits t2’t’+i . 
e3 (te4)2(2k-‘). The even differentials on tie3 are zero for bidegree reasons. Hence the 

classes surviving to the even columns of the EQ(“)+‘-t erm are of two kinds: those in 

(even, even) bidegrees which have not supported a differential, and those in (even, 

odd) bidegrees which were not hit by a differential. The first classes form the free 

Z/2[te4]-module on the generators t’ with vz(i) Zn, i.e., on the integral powers of t2”. 

The second classes form the sum of the polynomial algebras in ted truncated at height 

2(2k - 1) on the generators t’e3, where k = vz(i). If u2(i) > n there is no truncation. 
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Hence 

(8.3) E!;,;d”(c*,?; Z/2) = Z/2[te4, t”‘, t-“I{ l,es} 9 $ P2(2”_,@4) . t’e3, 

k==m(i)<tl 

@“*“‘(c2n; Z/2) = &,* P(n)+‘(C& Z/2) @E(u,). 

Now consider the odd differential generated by 

d’(&,) = t2”+i(te4)2”-’ 

whenever 112(i) > n, where Y = p(n) + 1. It maps the odd columns to the even columns, 

and is trivial on the even columns. On u,, times the first (polynomial) summands above, 

the differential is injective, with cokemel the free PZ”_l(te4)-module on generators 

t’ and tie3 with ~(i)>n. On U, times the second (truncated) summands above, the 

differential is zero because 2” - 1 > 2(2k - 1) for all k <n. Hence 

~P’“)+2(C2”;2/2)=P2._,(te4)[t2”,t-2’i l{l,e3>fE $ P2(2”-l)(te4).tie3{l,u,). 
k:rl(i)<n 

This F-term is concentrated in fiber degrees 4(2”-2)+3 or less, and since p(n)>4(2”- 

2) + 3 there can be no further differentials, at this stage or later. Hence the spectral 

sequence collapses as claimed. 0 

Lemma 8.4. The spectral sequence E*(CZ~; Z/2) has E2-term 

E2(C2.; Z/2) = Z/2[t, u,, e3, eb]/(ui = 0, e: = 0) 

and diflerentials 

d’(t2” ) = t3.2k e3 . (te4)2(26-‘) 

with r=p(k+ 1)Jor all O<k<n, and 

d’(un) = t2” (te4)2”-’ 

with Y = p(n) + 1. All dtrerentials are derivations with respect to the formal algebra 
structure, and the classes es, ted and t2” are permanent cycles. This determines all 
the remaining differentials. The E P(“)+2-term of the spectral sequence is concentrated 

in ,fiher degree 4(2” - 2) + 3 or less, and so the spectral sequence collapses at this 
stage. The Em-term satisjes 

E”(C2”;~/2)=P2”Ii_,(te4)[e~fl,e4 -2nl{l,e3)@ $ P2(2”+1~,)(te4).e3e6{1,Un} 
k=cz(i)<n 

in nonnegative total degrees. 

Proof. All claims are clear by comparison over the homotopy restriction map 

E*Rj: : E*(C2,1; Z/2) i g*(C2,,; Z/2), 
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except perhaps the calculation of the En” -term. We compare the spectral sequence with 

its localization where e4 is inverted, at the E2-term. These two spectral sequences agree 

in nonnegative total degrees. 

For r<p(n) + 1 there are no odd &‘-differentials, so in this range each term Er(C2”; 

Z/2) is the exterior algebra on U, over the even columns. At the E2-term, these even 

columns agree in nonnegative total degrees with the free Z/2[te4]-module on the gener- 

ators ei and e3e4, with i E Z. There is a S-differential on e6 precisely when uz(i) = k < n 
i-zk’ ’ 

and r = p(k + 1 ), which hits e4 e3 . (te4)2(21+‘- . ‘) Hence the classes surviving in 

the even columns of the EQ(“)+l-t erm are again of two kinds: those in (even, even) 

bidegrees which have not supported a differential, and those in (even, odd) bidegrees 

which were not hit by a differential. The first classes form the free Z/2[te4]-module 

on the generators eb with vz(i)>n, i.e., the integral powers of ei”. The second classes 

form the sum of the truncated polynomial algebras in ted of height 2(2k+’ - 1) on the 

generators e3ed, where k = 112(i). If k2n there is no truncation. Hence 

E ~$)+1(C2~;Z/2)=Z/2[te4,e~,e42”]{1,e3}$ $ P2(2k+l_l)(te4).e3ei 
k=al(i)<n 

in nonnegative total degrees. Now consider the odd differential generated by 

d’(eiu,) = (te4)2’+‘-’ . ei-*” 

whenever uz(i) > n, where Y = p(n)+ 1. It is injective on u, times the first (polynomial) 

summands above, with cokernel the free Pzn+l _l(te4)-module on generators ei and e3ei 

with u2(i)>n. On un times the second (truncated polynomial) summands above it is 

zero, because 2”+’ - 1 >2(2k+’ - 1) for all k<n. Hence 

EP(“)+2(C2,; Z/2) 

2” -2” 
=P2”+l-,(te4)[e4 ,e4 ]{l,e3} @ $ P2(2k+l-lJ(te4). wd{l,hl 

k=v2(i)<n 

in nonnegative total degrees, as claimed. 0 

Lemma 8.5. There are II permanent cycles in each nonnegative total degree of 

E*(C2”; Z/2), except in the degrees congruent to -1 or 0 mod2”f2 where there are 

(n + 1) permanent cycles. 

Proof. The first part 

P2~+~_,(te4)[e~“,e~2’]{ l,e3} 

of the Em-term has one generator in each total degree except the degrees -2 and 

1 mod 2’+‘. 

For a fixed k 20, the sum of the terms 
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with oz(i) = k contains one generator in each total degree, except in the degrees 2k+2 -2, 
2k+2 _ 1, 2k+2 and 2kf2 + 1 mod 2kc3. Summing over 0 <k <n we find that the second 

part of the E” -term has (n - 1) generators in each degree, except in the degrees -2, 

-1, 0 and 1mod2”+2, where there are n generators. 

Hence the Em-term itself has rank n in every total degree, except in the degrees -1 

and Omod 2n+2, where the rank is (n + 1). q 

The induction step is made possible by the following result. 

Lemma 8.6. In nonnegatizle total degrees the spectral sequence E*(C2”_l; Z/2) has n 

permanent cycles in et7ery total degree, except in the degrees congruent to -1 or 

0 mod 2nf2, where there are (n + 1) permanent cycles. 

Proof. Tsalidis’ theorem from [20] and the initial input Theorem 0.2 ensure that there 

is a two-adic equivalence of connective covers induced by the map 

i‘n+, : T(zp + fu(Cpl, T(Z)). 

Hence in nonnegative total degrees the order of the abutment of E*(&; Z/2) equals 

the order of the abutment of E*(C2,+ I ; Z/2). The claim follows. 0 

Lemma 8.7. The eoen columns L?f’ the ELJcnji ‘-term of l?*(C&,~ I; Z/2) are given by 

z/2) = Z/2[te4,t2”,t-2”]{1,e3}CT $ P2(2i-I)(te4). t’e 

k=a(i)<n 

und the full spectral sequence sutis$es 

E ̂$)+‘(c?“+‘; 2/2)=Ep?‘+‘(C et .* 2”‘I; Z/2) @E(%I,l ). 

The d’-d@rentiul for r = p(n) f 1 is zero. 

Proof. Up to the first odd differential in E*(&;Z/2), of length ro(n)=p(n) + 1, the 

Frobenius and Verschiebung maps induce isomorphisms of E’-terms and d’-differentials 

between E*(C2”; Z/2) and E*(C2”- I ; Z/2), taking u, to u,,+t in the odd columns. This 

explains the formulas above, in view of (8.3). By Proposition 3.8 the first odd differ- 

ential of E*(C,,, I ; Z/2) is strictly longer than that of E*(C,“; Z/2), which had length 

p(n) + 1. •1 

Lemma 8.8. For p(n) <r < p(n + 1) the d’-d@rentials in I?*( C2.+l ; Z/2) are zero. 

Proof. The permanent cycles t2,fR and f3 (coming from 1;~ and 3, in K*(&; Z/4)) act 

upon the spectral sequence by formal multiplication by (ted)* and es. Each class in the 

given Ep(“)+‘-term can be written as the product of a class in fiber degree 0 or 4 with 

a power of (te4)2 and es. Thus it suffices to show that there are no Z-differentials 

originating in fiber degree 0 or 4 when r is in the stated range. The only classes 



270 J. RogneslJournal oJ’ Pure and Applied Algebra I34 (1999) 219-286 

surviving in these fiber degrees are t’ and tiu,+l with uz(i)>n, and ted times these 

classes. 

When k <n the summand P2(2k_lj(te4) . t’e3{ 1, u,} in the given Ep(“)+l-term is con- 

centrated in fiber degrees 3 through 4(2(2k - 1) - 1) + 3 <p(n). Hence none of the d’- 

differentials with Y > p(n) can land in these summands. The remaining summands con- 

stitute the free Z/2[ted,e3]/(et = 0)-module on the classes t’ and t&,+1 with uz(i)>n. 

We have thus identified the relevant possible sources and targets of any nontrivial 

d’-differentials with r>p(n). Bidegree considerations will now show that any such 

differentials are zero as long as r <p(n + 1). 

A d’-differential on t- 2” lands in total degree 2”+l - 1. The possible targets in this 

total degree are (te4)2”-2 e3 and t-2”~,+t, along with their multiples with powers of 

(t2e4)2”. The latter family (involving u,+t ) is excluded by an S’-comparison argument: 

there can only be even differentials originating from the even columns. The former fam- 

ily lives in fiber degrees -5 mod 2n+2 and can only equal d’(te2’) for r = -4 mod 2n+2. 

Clearly there are no such r strictly between p(n) = 2”+2-4 and ~(n + 1) = 2”+3-4. 

A d’-differential on t-‘” u,+l lands in total degree 2”+’ - 2 where the possible tar- 

gets are (te4)2’-2u,+le3 and (te4)2”-‘, and their multiples with powers of (t2e4)2’. 

These classes live in fiber degrees -5 and -4 mod 2”f2, and would be hit by d’- 

differentials with r = -4 or -3 mod 2 n+2. The former cases fall just outside the 

range considered, as above, while there is one bidegree where we could have a 

differential of the latter type, namely Y = p(n) + 1. But this is precisely the differ- 

ential present in _!?*(C’Z~; Z/2) but excluded in E*(C2.+1 ; Z/2) by the last clause of 

Lemma 8.7. 

Similar arguments applies to all t’ and Pun+1 with uz(i) > n, and to their products 

with ted, and the lemma follows. q 

Corollary 8.9. Any nontrivial d’-difSerentia1 in 8*(C2.+1 ; Z/2) with r > p(n) has r > 

P(n + 1). 
The jrst possible nontrivial odd d@erential in l?(C2”+1 ; Z/2) has length at least 

p(n+ l)+ 1. So ro(n+ l)Lp(n+ I)+ 1. 

We now know that the E’-terms of E*(C,.; Z/2) and E*(C2”+1 ; Z/2) are isomorphic 

through the Frobenius and Verschiebung maps as long as r 5 p(n) + 1, while the 

dP(“)+‘-differentials present in the former spectral sequence are zero in the latter. By 

the corollary above the next possible differential in the latter spectral sequence is the 

dp(“+‘)-differential, which is a derivation by Lemma 7.1. This acts upon the EP(“+‘)- 
term given in Lemma 8.7. We now proceed with the analog of Lemma 7.4, using 

Lemma 8.5 to generalize formula (7.2). 

Lemma 8.10. In the spectral sequence I?*(C2”+l ; Z/2) the classes in the summands 

G3 P2(2k-I j(te4> . t’e3, and P2(2~_-)(te4)[tzn, te2’] . e3 
k=!Jz(i)<n 
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are permanent cycles. There is a d@erential 

dP(n+‘)(t--2”) = t2’ . e3 . (te4)2(-‘), 

Proof. The listed classes are infinite cycles since they sit in (even, odd) bidegrees in 

the image from 8*(S’ ). They are permanent cycles because their fiber degrees are 

strictly less than p(n + 1) - 1. In total degree 2”+’ - 1, the classes 

t2”-’ -2” . e3 . ( te4)2(2” - ’ ) 

for 0 5 k <n are easily seen to be permanent cycles of this kind. 

(They arise as follows. For each 0 5 k<n the differential dp(k+‘)(t-2k) = t2’ e3 . 

( te4)2(2A-” implies that d p(k+“(t-2”) is zero, by the formal algebra structure. Thus the 

nonzero class 

t2” ’ ’ -2” q (te4)2(2k-‘) 

in the target bidegree of this zero differential is a permanent cycle.) 

These are all distinct, so by Lemma 8.6 these are all the n permanent cycles in this 

total degree. Hence the next infinite cycle in this total degree, namely t2” .e3 .(te4)*(*“-’ ), 

must be a boundary. Considering the fiber degree of this class, the only possible 

differential affecting it is the d PM ‘-differential given above. 0 

Lemma 8.11. In the spectral sequence l?*(S’; Z/2) the d’-dtjerentials for r 5 p(n+ 1) 

are determined by being derivations, the formulas dp(k+“(t-2k) = t2k . e3 . (te4)2(2k-” 

for 0 <k z n, and that e3 and ted are permanent cycles. 

Hence E*( C,.+, ; Z/2) is an algebra spectral sequence through the (E’, d’)-term with 

r = p(n+l), with dtfherentials determined by dJ’(k+‘)(t-2k) # 0 as above, dP(“+“(u,) = 0, 

and that e3 and ted are permanent cycles. 

Proof. The dP("+' j-differential just found translates to the S’-spectral sequence by the 

Frobenius map, and generates the remaining d P(“+“-differentials there by the algebra 

structure and the permanent cycles es and ted. Translating back by the Frobenius map 

again determines the even columns of ,!?*(C2ti+l; Z/2) up to the d”(“+“+‘-differential, 

and similarly by the Verschiebung maps from the left shifted S’-spectral sequence to 

the odd columns. 0 

Again, the last step of the induction is to determine the d P(*+ ‘+’ -differentials. These 

are indeed nonzero, and so in fact ro(n + 1) = ~(n + 1) + 1. 

Lemma 8.12. In the spectral sequence l?*(C2.+~;Z/2) there are dtfjerentials 

d p(n+l)+l t2'4'i 
( 

. t-2n"' 
h+le3) =t 

2""'r e3(te4)2'4'-l, 

&'("+l)+l(t2"+'; 
. t- 2""+1 un+le3e4) = t2”+li . e3(te4)2”” 

for all integers i. 
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Proof. We focus on the cases with i= 0. The same argument will work for any i 

when all the classes involved are multiplied by t *“+li. We omit this factor throughout 

for brevity. 

Consider the classes e3(te4)*““-’ and e3(te4)2n” in 8*(C2”+1 ; Z/2). They are in (even, 

odd) bidegrees, hence infinite cycles. They are in total degrees 2”+* + 1 and 2n+2 + 3, 

where by Lemma 8.6 the abutment has II permanent cycles. By Lemma 8.10, the classes 

t*k+'-2"+' .e3.(te4) 
*k+'-, 

and t 
*k+'_*"+' 

.e3.(te4) 

*k+! 

for 0 < k <n are all the permanent cycles in these total degrees. Hence the two infinite 

cycles considered must be boundaries, and given their fiber degrees (which are ~(n + 

1) + 3 and ~(n + 1) + 7) it is easy to see that the listed differentials are the only ones 

which can affect the two classes. There can be no slightly longer differentials from 

near the horizontal axis, because the candidate classes for supporting such differentials 

die after the E4- or the E”-term. 0 

Lemma 8.13. In k*(C,,+1;2/2) the d P(“+‘)+‘-dz~erentials are determined by being 

derivations, the formula 

dP(~+l)+l(t--2"+'un+l)=(te4)*n"-~, 

and that es, ted and t**“.” are dp(“f’)+‘-cycles. 

Proof. By the formal action of e3 the previous lemma gives the differentials 

d&I+l)+r(t2”“i. t-2”+‘U,+,) = t2”“‘i (te4)2”+‘-1, 

dp(n+l)+l~t2”+‘i . t-2”+‘+lUn+,e4j = t2”+‘i . (te4j2’+’ 

for all integers i. By the formal action of e3 and (te4)* from Lemma 7.3 this determines 

that all the possible d P(“+‘)+‘-differentials of 8*(C2”+1 ; Z/2) are indeed nonzero. These 

differentials are easily seen to act as derivations with respect to the formal algebra 

structure. 0 

Theorem 8.14. Hypothesis (8.1) holds for all n > 1. Hence each spectral sequence 

&*(CP; Z/2) has E*-term 

E*(C*fl; Z/2) = Z/2[t, t-l, un,e3,e4]/(u~ = 0, e: = 0), 

its dlferentials are derivations and generated by 

dP(k+])(t-*')& .e3 (te4)*+-1) 

for all O<k<n and 

dP(n)+l(t-*"U,)=(te4)2"-1 

while e3, ted and t+2” are permanent cycles. The jirst nonzero odd d@erential has 

length r-o(n) = p(n) + 1, and the spectral sequence collapses immediately thereafter, 
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at the EP(“)f2-term. The Em-term is 

IP(C24/2) = P2”-,(te4)[t2n,t-*n]{1,e3} $ $ P2(2”L,)(te4)’ t’q{l,u,} 
k=l,>(i)<n 

and abuts additively to x*(fi(Cp, T(Z)); Z/2). 

Proof. The case n = 1 was established as Theorem 4.1. Taken in sequence, 

Lemmas 8.2-8.13 establish that the hypothesis for a given n > 1 implies the hypothesis 

for IZ + 1, and so the theorem follows by induction. q 

Remark 8.15. We note that integrally 

rc*T(Z),c’” ” 

1 

-fl+l 

z2 for * = 0, 

(finite) for * >O odd, 

0 otherwise 

by a Bockstein argument, since we know that ~c*T(Z)~~” is torsion in positive de- 

grees by the norm-restriction sequence. Thus multiplication by q is indeed trivial on 

the two-torsion in rr* T(Z)cz”, in all degrees, and so a posteriori we know that the 

obstruction to an algebra structure on E*(&; Z/2) vanishes. One consequence is that 

rr*( T(Z)‘2”; Z/2) has exponent two, not four, in all degrees. None of these results need 

generalize to the fixed points of T(A) for more general rings A. 

9. Spectral sequences related to W(Z)2 

Our next task is to recognize and name the permanent cycles in E*(CP; Z/2) and 

E*(C$; Z/2), abutting to the mod two homotopy of T(Z)hC~” and A( C2”, T(Z)), respec- 

tively. In the limit over the Frobenius maps the former tends to E*(S’; Z/2), which 

abuts in nonnegative total degrees to the mod two homotopy of TF(Z), defined as 

holimFZ’( Z)‘z” . We write TF*(Z; Z/2) for z*( TF(Z); Z/2). 
Our arguments are related to those of Section 4 of [6], but our bookkeeping proceeds 

differently, by bringing attention to certain vertical and horizontal bands partitioning 

the spectral sequences. 

Lemma 9.1. The spectral sequence E*(S’; Z/2) converges to TF*(Z; Z/2) in non- 

negative total degrees, and has Em-term 

E”(S’; 2/2)=Z/2[te4]{ l,e3} $ @ P2c2k+l_lJ(te4). e3ef 

k-o>(i) 

in nonnegative fiber degrees. 

Proof. This is simply the limiting case of Lemma 8.4 as n tends to infinity. 0 
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Definition 9.2. Let ~2~ = (te4)’ be the (only) permanent cycle in E*(S’ ; Z/2) in total 

degree 2r, for r > 0. Let {x~,_~(v)},>o be the permanent cycles in E*(S’; Z/2) in total 

degree 2r - 1, for Y > 1, indexed sequentially by decreasing filtration. 

For example ~-i(0) is the permanent cycle closest to the vertical axis, in filtration 

0 or -2 for r even and odd, respectively. As u grows, the x+1(0) move up and left 

along a ray within the same total degree. Thus 

P(S’; Z/2) = 
U{X2r ) in total degree 2r 2 0, 

@z, U2{%-1 (v)) in total degree 27 - 1. 

Lemma 9.3. The permanent cycle ~2~_l(v) has even filtration degree s uniquely de- 

termined by the inequalities 

(i) p(u)<1 -s<p(u+ 1) 

and the congruence 

(ii) --s E 2(r - 2) mod 2’+2. 

Hence the Em-term of E*(S’; Z/2) can be divided into countably many vertical bands 

separated by vertical lines at the filtration degrees 1 - p(v) for v 2 0, and in each 

odd total degree there is precisely one permanent cycle in each vertical band, with 

x~~_-](v) in the vth vertical band (counting from 0). 

Proof. Fix a total degree 2r - 1 and consider the vth band. We seek a class (te,)je,ei 

with (a) 2j+3+4i=2r-1 and(b) p(v)<1+2j<p(v+l), such that (~)j<2(2~+‘-1) 

where k = vz(i). Then we have found a permanent cycle in the correct band and total 

degree. (If i=O condition (c) is void.) The first two conditions can be rewritten as 

2i+j=r-2 and 2(2”-1)<j~2(2~+’ - 1). The latter condition lets us select a unique j 

‘+’ so thatj-r-2mod2 . Then the former condition determines i with 2i = 0 mod 2”+l, 

so k = vz(i) > v. Hence j<2(2”+’ - 1) < 2(2k+’ - 1) as required by (c). 

The selected class is unique. For suppose (teJ)j’ejec also satisfies the three con- 

ditions (a), (b) and (c). Then 2i + j = 2i’ + j’ and 1 j - j’l<2”+’ so Ii - i’/ ~2”. 
Since k = vz(i) > v we must have k’= uz(i)<v unless i = i’. Then 2(2” - 1) 5 j’ and 

j’ < 2(2k’+1 - 1) leads to a contradiction. On the other hand, if i = i’, then also j = j’, 

and so the classes are equal. 0 

Lemma 9.4. For r > 0 

For r-2 1 

when uz(r) <n, 
when v*(r) >n. 

In the latter cases, the associated graded module has additive generators 

~07%1(w) czn ; Z/2) = U2{X27--1 (O), . . . , xZr_-l(n - 1)) when uz(r) < n, 

ZI~{X~,-I(O>,...,X~~-~(~)) when v2(r)>n. 
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Proof. The orders of these groups were given in Lemma 8.5. By Remark 8.15 they 

have exponent two, hence are Z/2-vector spaces. Later we will only use the orders of 

these groups and not their precise group structure, so we omit the proof of this remark. 

To identify the generators in total degree 2r - 1, consider the Em-term of E*(Cz.; 

Z/2) from Lemma 8.4. The permanent cycles include all the permanent cycles of 

E*(S’; Z/2) in the filtrations --s with s 5 p(n) - 2, i.e., in the vertical bands 0 through 

n - 1. These are the classes x2+ 1 (u) with 0 5 u <II. In addition there are the exceptional 

classes 

with u~(i)>n, which are the ~-t(n). 0 

Next we make the same calculations for the Tate spectral sequences. 

Lemma 9.5. The spectral sequence lZ?*(S’ ; Z/2) converges to TF*(Z; Z/2) in nonneg- 

ative total degrees, and has EM-term 

_!P(S’; Z/2) = Z/2[te4]{ l,e3} $ @ P2C2k--lI(te4) . t’e3. 
!i=ol(i) 

Proof. This is the limiting case of Lemma 8.2. Cl 

Definition 9.6. Let yzr = (ted)’ be the (only) permanent cycle in I?*(S’; Z/2) in total 

degree 2r, for r > 0. Let { ~z~_~(II)},L~ be the permanent cycles in B*(S’ ; Z/2) in total 

degree 2r -- 1, indexed sequentially by decreasing filtration. 

For example ~2~-t(O) is the permanent cycle closest to the horizontal axis, in fiber 

degree 3 or 7 for r even and odd, respectively. As v grows, the y2+ 1 (u) move up and 

left along a ray within the same total degree. Thus 

P(S’; ‘Z/2) = WY2rl in total degree 2r > 0, 

CB:“=, 7w{Y2r- I <v>> in total degree 2r - 1. 

Lemma 9.7. The permanent cycle Yap-, has fiber degree 4z+3 with t > 0 uniquely 

determined by the inequalities 

(i) p(v)<25 + 1 <p(u + 1 1 
and the congruence 

(ii) z-r - 2 mod2”+‘. 

Hence the Em-term of l?*(S’ ; Z/2) can be divided into countably many horizontal 

bands separated by horizontal lines at (near) the jiber degrees 2p(v) + 1 for v > 0, 
and in each odd total degree there is precisely one permanent cycle in each horizontal 
band, with ~2~_1(v) in the vth horizontal band. 

Proof. The proof is similar to that of Lemma 9.3, and will be omitted. 0 
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Lemma 9.8. In even total degrees 

~*r(fi(C2”, T(Z)); U2) = 
{ 

n 
Efiiin- 

l when 02(r) < n, 

when uz(r) 2 n. 

Likewise, in odd total degrees 

n 

~2r-l(W(C2n, T(Z)); U2)= 1 (z/2)“-’ when 02(r) < n, 
cz,2j 

when u2(r) > n. 

Here the associated graded module has additive generators 

~“~2r-1m2~), W)); Z/2) 

Z/2{y2,-1(0),...,y2,-l(n - 2)) when u2(r)<n, 

= Z/2{y2r-l(O),...,y2r-l(n- 1)) when u2Cr)Zn. 

Proof. This time the proof is similar to that of Lemma 9.4, and will be omitted. 0 

Definition 9.9. The line containing the permanent cycles (ted)jes will be called the 

separating lirze. Let [x] denote the greatest integer less than or equal to a real number 

x, and let log,(x) be the base two logarithm of x. 

Lemma 9.10. In E*(S’; Z/2) the permanent cycle (te4)‘-2e3 in total degree 2r- 1 (on 

the separating line) has the name xlr_l(e) where e= [log,(r) - 11. In Z?*(S’;2/2) 

the same permanent cycle has the name yzr_l(e) for the same e. Hence in total 

degree 2r - 1 the classes x2,.-~(v) and y2+1 (u) with v <e lie above (to the right of) 

the separating line, the classes xZr_l(e) = yzr_l(e) lie on the separating line, and the 

classes x2,.- 1 (u) and y2r- 1 (v) with v > e lie below (to the left of) the separating line. 

Proof. By Lemma 9.3 the class eJ(te4) r-2 is in the vth vertical band of E*(S’ ; 2/2) 

where p(v)<1 -s<p(v+ 1) and s=-2(r-2), so 4(2’-- 1)<2r-3<4(2”+’ - 1) or 

equivalently 2 _ “+I < r <2°+2. Hence v = [log,(r) - I] = e. By Lemma 9.7 the same class 

e3(te4) r-2 is in the wth horizontal band of B*(S’; 2/2) where p(w) <22+ 1 <p(w + 1) 

and z = r - 2, so again 4(2” - 1) <2r - 3 <4(2+‘+’ - 1) and w = [log2(r) - l] = e. 0 

Thus classes on the separating line have the same x- and y-indices. We reserve the 

notation ~z~-~(e)= yzr_l(e) for the class XZ,_~(V)= y~~_l(v) with v=e= [log,(r)- 11. 

10. The restriction map on W(Z)2 

Our final task is to compute the restriction map R : TF(Z)2 + TF(z)2, and the dif- 

ference between it and the identity map, in mod two homotopy. This allows us to 

compute the mod two homotopy of the topological cyclic homology TC(Z)2 of the 

integers at two, defined in [5] by the fiber sequence 

7’C(z)2 -% TF(Z)2 5 TF(H)2. 
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By viewing R above as the limit over n of the homotopy restriction maps 

211 

we make this calculation by determining the induced maps of EQJ-terms from Effi(C2”; 

Z/2) to E”(C,.; Z/2) in terms of the permanent cycles Q-I(U) and JQ~_~(u) from 

the previous section, and forming products in the homotopy of K(Z)2 to construct 

good representatives in Z’F+(Z; Z/2) for these permanent cycles. 

Our arguments largely follow those of Section 7 of [6]. 

In this section all spectra will be implicitly completed at two. Recall the diagram of 

fiber sequences from [6], see Proposition 5.1 of [l 11: 

The vertical maps induce isomorphisms in mod two homotopy in nonnegative degrees 

by Theorems 0.2 and 0.3. In particular i;, induces an isomorphism between the groups 

with associated graded groups computed in Lemmas 9.4 and 9.8. The diagram above 

is compatible with the Frobenius maps, and in the homotopy limit over II, we get the 

following diagram of fiber sequences: 

N 
~T@)hsl - TF(Z) R TF(z) 

(10.2) 
II 
II 

Nh Rh 

cT(%s -T(Z)hS’ -tQ(S’, T(Z)). 

We wish to compute the map R: TF(Z) -+ TF(Z) in mod two homotopy. By these 

diagrams we may as well study RI: : T(.Z)hc2n --f fi(Cz., T(Z)) for n large, or as an 

approximation, the homomorphism of Em-terms induced by 

E*R; : E*(&; Z/2) -l?*(C2n; Z/Z). 

Definition 10.3. The topologicul cyclic homology of Z at two is defined by the fiber 

sequence 
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By Proposition 4.6 of [ 1 I] it follows that X(Z)? is the underlying space of a homotopy 

commutative ring spectrum, and that 7~ is a ring map. Let d : QW’(B)~ + E(Z), be 
the induced connecting map. We write TC*(Z; Z/2) for n*(TC(Z); Z/2), and likewise 

for TF and with Z/4_coefficients. In Theorem 10.9 we will compute the mod two 
homotopy of TC(Z)2, by determining the map induced by R - I. 

The cyclotomic trace map of [5] 

trc: K(i& -+ TC(Z)2 
A 

lifts the circle trace map K(Zz)2 -+ TF(Z)z over E, by construction (see [5, Proposi- 

tion 2.51). We do not know, and will not use, that trc is a ring map. However, it is 
an infinite loop space map, and thus induces a n*Q(S’)-module homomorphism on 

homotopy. 
Let $44~ K&Z; Z/4) and t&e TCz(Z; Z/2) be the images of the classes with the 

same names in &(&; Z/4) and Q(Q(S’); Z/2), respectively. Recall that p denotes the 

mod two reduction map from mod four to mod two homotopy. Define classes 

~4i=P((~4’4)1)~TC4i(Z;B/2), 

v _ 
hi+2 = (~4)’ . ~2 6 TGi+z(z; z/2) 

for i 2 0. Here the products are formed using the ring structure on the mod four 
homotopy of TC(Z)2, and its action upon mod two homotopy, stemming from the ring 
spectrum structure on TC(Z)z. We write (0 = I. Also let 

&it2 = n(54i+2) E T’4i+2(z; G’2) 

be the images in TF*(Z; Z/2) of the classes just defined. Then R( 5~~) = iJ2,. in TFz,(Z; 

Z/2) for all r _> 0, with R as in (10.2). Also 52r is represented (under the identifica- 

tion r) by the permanent cycle xzr = (ted)’ on the separating line in E*(S’; Z/2), and 
likewise (under the identification I=) by ~2~ = (ted)” in g*(S*; Z/2). 

Next let RE TC3(Z)2 and KE TC5(Z), be the images of the classes with the same 
names in K5(Z)2. Define classes 

5d1+3(e) = p((%)i LIE TG+3(z; &‘2), 

54i+5(f)=p((+4Y . JC)E TGi+s(Z; 74’2) 

for i > 0, where e = [log,(2i f 2) - l] and f = [log,(2i + 3) - I]. Again the products 
are formed using the ring structure on TC(Z)z. Also let 

54i+3(e)=71(54i+3(e))E TFai+j(z; B/2), 

54i+s(f) = $54i+s(f)) E TF4i+s(z; z/2) 

be the images in TF*(Z; Z/2) of the classes just defined. Then R(&_l(e)) = 52,.-l(e) 
in TFzr_l(Z; Z/2) for all r 2 2, with e = [logz(r) - I], and 42,._,(e) is represented by 
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the permanent cycle x2r_i(e)=es(te4)‘-2 in E*(S’;Z/2), and likewise by yzr_t(e)= 

e3(te4)rP2 in 8*(S’; Z/2). 

Remark 10.4. In Theorem 10.6 we will define classes 15~_i(u) in TF2r_~(Z; Z/2) for 

arbitrary indices v, not just v = e = [log,(r) - 11, so as to represent x2,._ I(V) in the asso- 

ciated graded group E”(S’; Z/2). Then, in Definition 10.8 we will use these L& 1 (u) 

to identify classes &-i in TFzr_, (Z; Z/2) that are in the kernel of R - 1, and hence 

admit lifts &,._i in TCZ~-~(Z; Z/2). In Theorem 10.9 we describe TC*(Z; Z/2) in terms 

of these classes. 

Now consider the homotopy restriction map Rh,: T(Z)hC2” + A( C,., T(Z)) and its 

induced map between the spectral sequences E*(C2”; Z/2) and E*(C2”; Z/2), in terms 

of the permanent cycles named x2,.-t ( o) and yzr- I (u). In even total degrees the only 

permanent cycles are x2,. and yz,., respectively, representing tzr E TFz,.(Z; Z/2) in both 

cases. As noted in Definition 10.3 the restriction map takes x2,. to yz,.. In odd total 

degrees there are many more permanent cycles. As we are interested in the limiting 

case when n grows, we may assume that n is large compared to the degrees of the 

classes in question. 

Proposition 10.5. Let Y > 0 and e = [log,(r) - 11. In total degree 2r - 1 the homo- 

morphism 

EWR; : EOCj(C2”; 212) + 19(c2"; z/21 

maps the permanent cycles x~~_I(v) as follows, provided n is sujiciently lurge with 

respect to v: 
(1) x2r_i(r) for Olv<e maps to 0 or to yzr_l(w), with ti<w<e, 

(2) x2r-l(e) maps to y2r-l(eh 

(3) xlr_l(e + 1) maps to 0, and 
(4) Q-I(U) for u>e + 1 maps to Y~~__I(c - 1). 

Proof. We divide into three cases, namely (i) the classes above the separating line, 

(ii) the classes e3(tedy directly on the separating line, and (iii) the classes below the 

separating line. 

Cuse (i): We consider the map EmRt : Em(C2”; Z/2) + .&(C2n; Z/2) in odd total 

degrees and above the separating line, i.e., on classes (te4yeJei with i>O. This is a 

homomorphism 

@{ 

P2(2k+l-lj(te4). e3ef, if k<n, 

k=tz(l) 
P2n+l_-l(te4). e3e6 ifk>n 

E-R; 
P2(2kpl)(te4). e3t-' if k<n, ------+ 
Pz”-l(te4). ejt-’ if k>n 
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sending each class to a class with the same name, or zero if there is no such class in 

the target. The part of the target contained in the second quadrant is 

@I 

p2(2’-i)-i(te4) . e3e\ if k-en, 

k = uz(i) 
Pp_l_i(te4). e3ei if k 2 FL 

Since i > 0 we have k < co, so for n large k <n, and we may concentrate on the top 

case. Write i = 2k .P with e odd. If e 2 3 then 2(2k - 1) - i = (2 - L)2k - 2 5 0. Similarly 

if i = 1 or 2. Hence in these cases the target has no classes in the second quadrant and 

EWRi is the zero homomorphism. 

The cases i = 2k > 2 remain. Then 2(2k - 1) - i = 2k - 2 and 

2k 
P2ke2(fe4). e3e4 

survives as the image of EOORt. The remaining classes in the source of EmRi are 

hit by differentials crossing the vertical axis in the Tate spectral sequence, i.e., have 

representatives in the image of the norm map N,“. And im(N,h) = ker(R$). 

When x~~__I(u) = (te4)Je3eit survives to a nonzero class in im(EWRt) it is repre- 

sented by some JQ,_~(w). If so, we claim u<w. Both v and w are clearly less than 

e, since we are considering classes above the separating line. ~~-1 (v) has filtration 

degree s= - 2j satisfying (9.3(i)), so 

p(v) < 1 + 2j. 

Since j<2k - 2 in im(EDORi) we get u + 2<k + 1. Likewise ~2~_1(~)=(te4)je3ei’ 

has fiber degree 42 + 3 with 5 = j + 2k satisfying (9.7(i)), and so 

2j + 2k+1 + l<p(w+ 1). 

Since j > 0 we get k + 1 <w + 3. Thus u <w. This completes the proof of part (1) of 

the proposition. 

Case (ii): On the separating line we have the classes e3(te4)r-2 = xzr_ I (e) = yzr_l (e). 

Evidently EWRi is the surjection 

P2n+8-l(te4). e3 
E-R; 

APz”_l(te4). e3 

and so P2”_l(te4).e3 is the image of EOORk. As n t cc this tends to all of Z/2[te4] .e3. 

In particular 

EaR$2,-l(e)) = y+l(e). 

This completes the proof of part (2) of the proposition. 

Case (iii): Below the separating line the source of EWRi is the second quadrant 

part of 

P2c2k+1 _ I ,(te4) . e3ei if k <n, 

P2”+, _, (ted) . e3ed if k >n. 
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Thus E”Rt is the homomorphism 

P2(21+1_tj-_i(tQ) . e3t’ if k<n, 

P2,tjl_l_i(te4). ejt’ ifk>n 

P2c2kplj(te4). e3t’ if k<n, 

P*“_,(teq). ejt’ ifk>n 

with i > 0. Again we may focus on the case k <n. Let i = 2k L’. The highest degree of 

a class in the target P2c2k_lj(te4). ext’ is 4(2k - 1) - 2 + 3 - 2i = (4 - 2Q2k - 3 <O if 

(23 orifi=1.Othenvisei=2kL2.Then2(2k+’-1)-i>2(2k-1),andsoE”Rh, 

is onto in all the cases where the target contains classes in nonnegative degrees. Hence 

Pzc2k_,)(te4). e3t’ is the image of EmRi. 

The source of EmRk contains the 2i - 1 classes in odd positive degrees 1 through 

4i - 3 from the module Z/2[te4] . eat’ for i = 2k > 1, while the target contains only the 

i - 1 classes in odd positive degrees 1 through 2i - 3. As i runs through the powers 

of 2, the lists of odd integers 2i - 1,2i + 1,. . ,4i - 3 combine to form a list where 

each odd positive integer appears precisely once. Hence there is precisely one class 

(te4)je3ti in each odd positive degree that is contained in the source but not in the 

target, namely the class of least negative filtration in the source. This is the class in 

degree 2r - 1 satisfying 2i - 3 <2r - 1 5 4i - 3, i.e., ~_t(e + 1). The higher-index 

classes x~~_t(e + 2), . . ,xzu_l(n) and yz,_t(e + l), . . , yz,_l(n - 1) are present both in 

the source and the target, simply under these different names. Hence, for n sufficiently 

large 

EOC)Rhn(x2r-,(~))=y2r-1(~- 1) 

for t:>e+ 1. and 

EmR~(qr_l(e + 1)) = 0. 

We may note that XZr-t(e + 1)=d4(2e+‘-‘) ((te4)jtm2’) for a suitable j, and so this 

class is represented by a class in im(N,h)= ker(Rh,) up to filtration. This completes the 

proof of parts (3) and (4) of the proposition. 0 

Now we will choose classes tir_, (u) in r~2~_t ( T(Z)c2”; Z/2) representing XZ~--I (0) 

in Em(C2”; Z/2), so as to be compatible under the Frobenius maps. Since 

the compatible sequence of classes (&._,(v)), will define a limiting class &r-l (II) = 

lim, t’;,_,(v) in TF2r_r(Z;Z/2) representing x~~_I(u) in E”(S’;Z’/2). (There is no 

lim’-term, since the groups involved are finite.) The choices will be made compatibly 

with Definition 10.3 in the case u = e. Proposition 10.5 lifts to give the following 

two-primary analogue of Theorem 4.2 of [7]. 
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Theorem 10.6. Let e = [logz(r) - 11. There are classes &_~(u)E TFz~-I(Z; Z/2) rep- 

resenting x~~_I (u) in the associated graded groups, such that 

(1) R(&,(v)) for O<v<e is a sum of terms C&-~(W) with v<w<e, 

(2) R(b-l(e)) = b-I(e), 

(3) R(b-l(e + 1)) = 0, and 

(4) R(b-I(V))=&1(v- 1)for v>e+ 1. 

Proof. There are classes 

representing the classes x~~-~(u) and JQ- 1 (v) in the respective associated graded 

groups. Here 0 5 v<n if Q(Y) < n and 0 2 v 5 n if VZ(T) >n in the case of the t;,_,(v), 

byLemma9.4,whileO<v<n-1 ifvz(r)<n-1 andO<v<n-I ifvz(r)>n-1 inthe 

case of the &_,(v), by Lemma 9.8. The classes for varying n can inductively be chosen 

to be compatible under the F,-maps, and thus define classes &,.- 1 (v) = limF, t$__. , (v) E 

T’2r_1(.Z; Z/2). We need to determine the map R on these limiting classes. There is 

a choice in choosing a lift &_1(v) when given 5y;II(.‘l(v) and x~~_~(v)EE”(C~~; Z/2), 

and we shall make use of this freedom to make “good” choices which simplify the 

formulas below. 

First, we have chosen &_,(e) in Definition 10.3, and let (b_,(e) be its im- 

age under the homomorphism induced by the natural map TF(h)2 --f T(Z)‘z”. Then 

F,(5b_l(e))= t;,--‘,(e) f or a 11 n, and since by Proposition 2.5 of [5] the maps R, and 

F, are homotopic on the image from K-theory, also Rn(&, (e)) = t;;?,(e). 

Second, x~+l(e + 1) is represented by a class x in E*(S’; Z/2) hit by a differ- 

ential crossing the vertical axis in ,!?*(Sl; Z/2), say d’(y) =x. Then a representative 

for y in 7c~,_l(CT(.Z),~1;2/2) maps under N to a class in TF2+1(&2/2) represent- 

ing ~2~_l(e+ I), and which lies in ker(R). We choose &l(e + ~)ETF~~__I(Z;Z/~) 

as the image under N of this representative. So R(&,_l(e + 1)) = 0 and similarly 

R,(Sb_,(e + 1)) = 0 for all n. 
Since f,, is an isomorphism, and compatible with the various F-maps, it follows as 

in (7.7) and (7.9) of [6], or equivalently (3.20) of [7], that ~~;~l(u) corresponds under 

ffl to [i,_,(v) modulo terms [z,_l(w) with n < w. (The conversion matrix from the 

t-basis to the c-basis is lower triangular and invertible, hence has l’s on the diagonal.) 

This pattern persists for all n, and thus also in the limit. 

Hence Proposition 10.5 asserts that under the two-adic connective equivalences r, 

and fn, RI: corresponds to the homomorphism 

which maps 

(1) (b_,(v) for O<v<e to 0 modulo terms 4iFJI(w) with u<w<n-2, 

(2) G_,(e) to 5!jzI(e), 
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(3) &,(e+ 1) to 0, and 

(4) 4$._,(v) for e+2<o<n- 1 to $;J,( u - 1) modulo terms t;;?,(w) with v 5 w 5 

n -2. 

Note that with respect to these bases R, is represented by a (n - 1) x FI matrix. 

The row corresponding to <i;:,(e) has a 1 in the column corresponding to ti,_, (e), 

followed by zeros to the right. Similarly each row corresponding to t;;/,(v) with e < z 

has a 1 in the column corresponding to &,(I? + 1 ), followed by zeros to the right. 

By modifying the choice of the lifts lb_ 1 (v) of c$;:, (v) over F, for 2’ > e + 1, we may 

assume that the rows corresponding to c$,--‘, (v) for e < t: in the matrix representing 

R, consist only of zeros, except for the single 1 in each row just mentioned. This is 

possible because a lift &,(v) of $,--‘, (v) is only determined modulo the “new” class 

&,(n - 1). (A detailed proof would proceed by induction over n.) 

With these choices, the limiting classes &r(v) = lim, &,(D) have the properties 

listed in the theorem. 0 

Using these classes, we may write: 

{ 

U2{52rl for * = 2r 2 0, 
(10’7) TF2r_i(z’z’2)= fl: Z/2{<2r_1(v)} for *=2r - 1 >O. 1’ 0 

Note that a product appears, rather than a direct sum, since TFzr_ 1 (Z; Z/2) is the limit 

of the groups rc~~_ I( T(Z)c2” ; Z/2). 

Definition 10.8. Let r > 1 and e = [logJr) - 11. Define &_I = lim,, &-r(v), i.e., 

t2r-I = fi 52r-1(0)~ W-1(% W’). 

r=e+l 

Theorem 10.9. There are short exact sequences 

O+Z/2{<2r} 2 K2r-~(.CZ/2) A Z/2{~2r-l(e),~2r-1}10 

Jbr r > 2, and 

0 + U2{t2,+l(e)} A TC2JZ; Z/2) -r, Z/2{ 12r} + 0 

for r > 1, determining TC*(Z; Z/2) J or * 12 up to extensions. The same sequences 
determine TC*(Z; Z/2) in degrees -1 < * 5 1, if the nonexistent classes t_,(e), r-1 

and t,(e) are omitted. Hence 

(2 for*=Oor*=-1, 

#TC*(Z; Z/2) = 
4 for*>2evenor*=l, 

8 for * 2 3 odd, 
1 for * 5 - 2. 

Proof. In degree 2r with r > 0 

n2,(R - 1; Z/2) : TF2,(Z; Z/2) + TFzr(Z; Z/2) 
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is the zero homomorphism. In degree 2r - 1 with Y > 1, 

n2,_,(R - 1; Z/2) : TFz,_,(Z; Z/2)+ TFz,-l(Z; Z/2) 

is given by 

-52r-l(0) f.. . for O<v<e, 

r2r-1(v)H y&l(e + 1) 

for v = e, 

for v=e+ 1, and 

&_i(v - 1) - 52+1(v) for v>e + 1. 

The signs are of little importance, since we are working mod two. The ellipsis refers 

to possible terms 52,.-i(~) with v <w <e. We have defined (~~-1 = lim, &I(V), i.e., 

&i = flrZc+, &t(v)~ TF~,-I(Z; Z/2). Then for r > 2 

kernz,-i(R - 1; Z/2) = Z/2(52,-i(e), 6%-i}, 

cok 7~2~_i(R - 1; Z/2) = Z/2(&i(e)}. 

In the case r = 1, the class &i(e) does not appear. So rri (R - 1; Z/2) is sutjective 

with kernel 2/2{<i}. The theorem follows. q 

Definition 10.10. Let &_i E TC2r_1(Z; Z/2) denote a lift of 

I&-I Eim(n) = ker(R - 1) c TFz~-_I(Z; Z/2). 

This class is defined modulo classes in im(8) = Z/2(8(52,.)}. 

To recover the two-adic homotopy type of TC(Z) from the mod two homotopy type, 

we shall in [18] need the action of fd E TCJ(Z; Z/4) on TC*(Z; Z/2). 

Proposition 10.11. Multiplication by fd on TF*(Z; Z/2) acts as formal multiplication 

by (ted)2 on E”(S’; Z/2). The action map is injective on ker x*(R - 1; Z/2) and on 
cok rc*(R - 1; Z/2), and is given by 

with e = [10g2(y)- l] and f = [log2(r+2)- I]. Hence G4 acts injectively on TC*(E; Z/2) 
in all degrees. The classes not in the image of the action are additively generated by 

a(l), 1, 51, a(&), <2, 453(o)), MO), 53, ~3(55(0)) and MO). 

Proof. By their definition as classes in TC*(&; Z/2) the classes [zr and &,.-l(e) are 

related as claimed by ;b. The connecting map 3 is a TC*(Z; Z/4)-module map (see 

Remark 2.9), so multiplication by c4 commutes with a. 

It remains to consider the limit classes 52+-1 = lim, &i(v) = n,“= =+, &--1(v) in 

ker z~~-~(R - 1; Z/2). In EOO(S’; Z/2) the class &_i is represented by the limit of the 
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classes x~~_,(u) for u large. Here xzr__l(0) = (te4)je3ti for some i = 2k and 2r- 1 = 2j-t 

3 -2i. These classes are defined and nonzero as long as j ~2(2~+’ - 1)-i = 3i-2. Then 

(t~)~ .~2~-1(u)=(te4) jf2e3ti is a nonzero permanent cycle if j + 2 < 3i - 2. This may 

not hold for a given v, but by choosing v sufficiently large we may increase i and j by 

a large amount (the same amount, since their difference is controlled by the relation 

to v), and so achieve the inequality j + 2 < 3i - 2. Thus (te4)2 . .x~~_I (0) = ~2~_+3(w) for 

some w > e when v is sufficiently large. This proves that <4 . (&I = 5zr+3. 

Hence 64 acts injectively on the subgroups and quotient groups of the extensions in 

Theorem 10.9, and therefore also on the total groups K*(Z; Z/2). 0 

This completes the spectral sequence analysis needed to understand X(Z) at two, 

and with it, the completed algebraic K-theory of the two-adic integers. The remaining 

arguments will be presented in [ 181. 
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